IDEAS home Printed from https://ideas.repec.org/p/hhs/oruesi/2022_007.html
   My bibliography  Save this paper

Matrix Variate Generalized Laplace Distributions

Author

Listed:

Abstract

The generalized asymmetric Laplace (GAL) distribution, also known as the variance/mean-gamma model, is a popular flexible class of distributions that can account for peakedness, skewness, and heavier than normal tails, often observed in financial or other empirical data. We consider extensions of the GAL distribution to the matrix variate case, which arise as covariance mixtures of matrix variate normal distributions. Two different mixing mechanisms connected with the nature of the random scaling matrix are considered, leading to what we term matrix variate GAL distributions of Type I and II. While Type I matrix variate GAL distribution has been studied before, there is no comprehensive account of Type II in the literature, except for their rather brief treatment as a special case of matrix variate generalized hyperbolic distributions. With this work we fill this gap, and present an account for basic distributional properties of Type II matrix variate GAL distributions. In particular, we derive their probability density function and the characteristic function, as well as provide stochastic representations related to matrix variate gamma distribution. We also show that this distribution is closed under linear transformations, and study the relevant marginal distributions. In addition, we also briefly account for Type I and discuss the connections with Type II. We hope that this work will be useful in the areas where matrix variate distributions provide an appropriate probabilistic tool for three-way or, more generally, panel data sets, which can arise across different applications.

Suggested Citation

  • Kozubowski, Tomasz J. & Mazur, Stepan & Podgorski, Krysztof, 2022. "Matrix Variate Generalized Laplace Distributions," Working Papers 2022:7, Örebro University, School of Business.
  • Handle: RePEc:hhs:oruesi:2022_007
    as

    Download full text from publisher

    File URL: https://www.oru.se/globalassets/oru-sv/institutioner/hh/workingpapers/workingpapers2022/wp-7-2022.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Harrar, Solomon W. & Seneta, Eugene & Gupta, Arjun K., 2006. "Duality between matrix variate t and matrix variate V.G. distributions," Journal of Multivariate Analysis, Elsevier, vol. 97(6), pages 1467-1475, July.
    2. Peng Ding & Joseph K. Blitzstein, 2018. "On the Gaussian Mixture Representation of the Laplace Distribution," The American Statistician, Taylor & Francis Journals, vol. 72(2), pages 172-174, April.
    3. Bulut, Y. Murat & Arslan, Olcay, 2015. "Matrix variate slash distribution," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 173-178.
    4. Bodnar, Taras & Mazur, Stepan & Podgórski, Krzysztof, 2016. "Singular inverse Wishart distribution and its application to portfolio theory," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 314-326.
    5. Pérez-Abreu, Victor & Stelzer, Robert, 2014. "Infinitely divisible multivariate and matrix Gamma distributions," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 155-175.
    6. Tomasz J. Kozubowski & Krzysztof Podgórski, 2020. "Gaussian Mixture Representation of the Laplace Distribution Revisited: Bibliographical Connections and Extensions," The American Statistician, Taylor & Francis Journals, vol. 74(4), pages 407-412, October.
    7. Madan, Dilip B & Seneta, Eugene, 1990. "The Variance Gamma (V.G.) Model for Share Market Returns," The Journal of Business, University of Chicago Press, vol. 63(4), pages 511-524, October.
    8. Kibria, B.M. Golam, 2006. "The matrix-t distribution and its applications in predictive inference," Journal of Multivariate Analysis, Elsevier, vol. 97(3), pages 785-795, March.
    9. Melnykov, Volodymyr & Zhu, Xuwen, 2018. "On model-based clustering of skewed matrix data," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 181-194.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buchmann, Boris & Kaehler, Benjamin & Maller, Ross & Szimayer, Alexander, 2017. "Multivariate subordination using generalised Gamma convolutions with applications to Variance Gamma processes and option pricing," Stochastic Processes and their Applications, Elsevier, vol. 127(7), pages 2208-2242.
    2. Patrizia Semeraro, 2022. "Multivariate tempered stable additive subordination for financial models," Mathematics and Financial Economics, Springer, volume 16, number 3, June.
    3. Patrizia Semeraro, 2021. "Multivariate tempered stable additive subordination for financial models," Papers 2105.00844, arXiv.org, revised Sep 2021.
    4. Boris Buchmann & Benjamin Kaehler & Ross Maller & Alexander Szimayer, 2015. "Multivariate Subordination using Generalised Gamma Convolutions with Applications to V.G. Processes and Option Pricing," Papers 1502.03901, arXiv.org, revised Oct 2016.
    5. Buchmann, Boris & Lu, Kevin W. & Madan, Dilip B., 2020. "Self-decomposability of weak variance generalised gamma convolutions," Stochastic Processes and their Applications, Elsevier, vol. 130(2), pages 630-655.
    6. Fung, Thomas & Seneta, Eugene, 2010. "Extending the multivariate generalised t and generalised VG distributions," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 154-164, January.
    7. Peter Carr & Liuren Wu, 2014. "Static Hedging of Standard Options," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 3-46.
    8. Dilip B. Madan & Wim Schoutens & King Wang, 2017. "Measuring And Monitoring The Efficiency Of Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(08), pages 1-32, December.
    9. Todorov, Viktor & Zhang, Yang, 2023. "Bias reduction in spot volatility estimation from options," Journal of Econometrics, Elsevier, vol. 234(1), pages 53-81.
    10. Lynn Boen & Florence Guillaume, 2020. "Towards a $$\Delta $$Δ-Gamma Sato multivariate model," Review of Derivatives Research, Springer, vol. 23(1), pages 1-39, April.
    11. William T. Shaw & Thomas Luu & Nick Brickman, 2009. "Quantile Mechanics II: Changes of Variables in Monte Carlo methods and GPU-Optimized Normal Quantiles," Papers 0901.0638, arXiv.org, revised Dec 2011.
    12. Lam, K. & Chang, E. & Lee, M. C., 2002. "An empirical test of the variance gamma option pricing model," Pacific-Basin Finance Journal, Elsevier, vol. 10(3), pages 267-285, June.
    13. Paolo Guasoni & Eberhard Mayerhofer, 2020. "Technical Note—Options Portfolio Selection," Operations Research, INFORMS, vol. 68(3), pages 733-740, May.
    14. David Scott & Diethelm Würtz & Christine Dong & Thanh Tran, 2011. "Moments of the generalized hyperbolic distribution," Computational Statistics, Springer, vol. 26(3), pages 459-476, September.
    15. Till Massing, 2019. "What is the best Lévy model for stock indices? A comparative study with a view to time consistency," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 33(3), pages 277-344, September.
    16. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    17. Martijn Pistorius & Johannes Stolte, 2012. "Fast computation of vanilla prices in time-changed models and implied volatilities using rational approximations," Papers 1203.6899, arXiv.org.
    18. Björn Lutz, 2010. "Pricing of Derivatives on Mean-Reverting Assets," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-02909-7, December.
    19. Lingyan Cao & Zheng-Feng Guo, 2012. "A Comparison Of Delta Hedging Under Two Price Distribution Assumptions By Likelihood Ratio," The International Journal of Business and Finance Research, The Institute for Business and Finance Research, vol. 6(1), pages 25-34.
    20. Kevin Fergusson & Eckhard Platen, 2006. "On the Distributional Characterization of Daily Log-Returns of a World Stock Index," Applied Mathematical Finance, Taylor & Francis Journals, vol. 13(1), pages 19-38.

    More about this item

    Keywords

    Covariance mixture of Gaussian distributions; distribution theory; generalized Laplace distribution; MatG distribution; matrix variate distribution; matrix variate gamma distribution; matrix gamma-normal distribution; matrix variate t distribution; normal variance-mean mixture; variance gamma distribution;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General
    • C46 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Specific Distributions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:oruesi:2022_007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/ieoruse.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.