IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04117547.html
   My bibliography  Save this paper

Building latent segments of goods to improve shipment size modeling: Confirmatory evidence from France

Author

Listed:
  • Raphael Piendl

    (DLR - German Aerospace Center)

  • Martin Koning

    (AME-SPLOTT - Systèmes Productifs, Logistique, Organisation des Transports et Travail - Université Gustave Eiffel)

  • François Combes

    (AME-SPLOTT - Systèmes Productifs, Logistique, Organisation des Transports et Travail - Université Gustave Eiffel)

  • Gernot Liedtke

    (DLR - German Aerospace Center)

Abstract

Freight transport demand models are generally based on administrative commodity type segmentation which are usually not tailored to behavioral freight transport demand modelling. Recent literature has explored new approaches to segment freight transport demand, notably based on latent class analysis, with promising results. In particular, empirical evidence from road freight transport modelling in Germany hints at the importance of conditioning and handling constraints as a sound basis for segmentation. However, this literature is currently sparse and based on small samples. Before it can be accepted that conditioning should be integrated in the state-of-the-art doctrine of freight data collection and model specification, more evidence is required. The objective of this article is to contribute to the issue. Using detailed data on shipments transported in France, a model of choice of shipment size with latent classes is estimated. The choice of shipment size is modelled as a process of total logistic cost minimization. Latent class analysis leverages the wide range of variables available in the dataset, to provide five categories of shipments which are both contrasted, internally homogenous, and directly usable to update freight collection protocols. The groups are: "standard temperature-controlled food products"', "special transports"', "bulk cargo"', "miscellaneous standard cargo in bags"', "palletised standard cargo"'. This segmentation is highly consistent with the empirical evidence from Germany and also leads to better estimates of shipment size choices than administrative segmentation. As a conclusion, the finding that conditioning and handling information is essential to understanding and modelling freight transport can be regarded as more robust.

Suggested Citation

  • Raphael Piendl & Martin Koning & François Combes & Gernot Liedtke, 2022. "Building latent segments of goods to improve shipment size modeling: Confirmatory evidence from France," Post-Print hal-04117547, HAL.
  • Handle: RePEc:hal:journl:hal-04117547
    DOI: 10.18757/ejtir.2022.22.2.5662
    Note: View the original document on HAL open archive server: https://hal.science/hal-04117547
    as

    Download full text from publisher

    File URL: https://hal.science/hal-04117547/document
    Download Restriction: no

    File URL: https://libkey.io/10.18757/ejtir.2022.22.2.5662?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Randolph W. Hall, 1985. "Dependence between Shipment Size and Mode in Freight Transportation," Transportation Science, INFORMS, vol. 19(4), pages 436-444, November.
    2. Keya, Nowreen & Anowar, Sabreena & Eluru, Naveen, 2019. "Joint model of freight mode choice and shipment size: A copula-based random regret minimization framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 97-115.
    3. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    4. Greene, William H. & Hensher, David A., 2003. "A latent class model for discrete choice analysis: contrasts with mixed logit," Transportation Research Part B: Methodological, Elsevier, vol. 37(8), pages 681-698, September.
    5. McCann, Philip, 2001. "A proof of the relationship between optimal vehicle size, haulage length and the structure of distance-transport costs," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(8), pages 671-693, September.
    6. Joan L. Walker & Moshe Ben-Akiva & Denis Bolduc, 2007. "Identification of parameters in normal error component logit-mixture (NECLM) models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(6), pages 1095-1125.
    7. Piendl, Raphael & Matteis, Tilman & Liedtke, Gernot, 2019. "A machine learning approach for the operationalization of latent classes in a discrete shipment size choice model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 121(C), pages 149-161.
    8. Megersa Abate & Inge Vierth & Rune Karlsson & Gerard Jong & Jaap Baak, 2019. "A disaggregate stochastic freight transport model for Sweden," Transportation, Springer, vol. 46(3), pages 671-696, June.
    9. de Jong, Gerard & Ben-Akiva, Moshe, 2007. "A micro-simulation model of shipment size and transport chain choice," Transportation Research Part B: Methodological, Elsevier, vol. 41(9), pages 950-965, November.
    10. Abate, Megersa & de Jong, Gerard, 2014. "The optimal shipment size and truck size choice – The allocation of trucks across hauls," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 262-277.
    11. W. J. Baumol & H. D. Vinod, 1970. "An Inventory Theoretic Model of Freight Transport Demand," Management Science, INFORMS, vol. 16(7), pages 413-421, March.
    12. Shelat, Sanmay & Huisman, Raymond & van Oort, Niels, 2018. "Analysing the trip and user characteristics of the combined bicycle and transit mode," Research in Transportation Economics, Elsevier, vol. 69(C), pages 68-76.
    13. Piendl, Raphael & Liedtke, Gernot & Matteis, Tilman, 2017. "A logit model for shipment size choice with latent classes – Empirical findings for Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 102(C), pages 188-201.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kalahasthi, Lokesh & Holguín-Veras, José & Yushimito, Wilfredo F., 2022. "A freight origin-destination synthesis model with mode choice," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    2. Martin Koning & François Combes & Raphael Piendl & Gernot Liedtke, 2018. "Transferability of models for logistics behaviors: A cross-country comparison between France and Germany for shipment size choice [La transférabilité des modèles de comportements logistiques : Une ," Post-Print hal-01916081, HAL.
    3. Holguín-Veras, José & Kalahasthi, Lokesh & Campbell, Shama & González-Calderón, Carlos A. & (Cara) Wang, Xiaokun, 2021. "Freight mode choice: Results from a nationwide qualitative and quantitative research effort," Transportation Research Part A: Policy and Practice, Elsevier, vol. 143(C), pages 78-120.
    4. Abate, Megersa & de Jong, Gerard, 2014. "The optimal shipment size and truck size choice – The allocation of trucks across hauls," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 262-277.
    5. Piendl, Raphael & Liedtke, Gernot & Matteis, Tilman, 2017. "A logit model for shipment size choice with latent classes – Empirical findings for Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 102(C), pages 188-201.
    6. Feo, María & Espino, Raquel & García, Leandro, 2011. "An stated preference analysis of Spanish freight forwarders modal choice on the south-west Europe Motorway of the Sea," Transport Policy, Elsevier, vol. 18(1), pages 60-67, January.
    7. Joan L. Walker & Moshe Ben-Akiva, 2011. "Advances in Discrete Choice: Mixture Models," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 8, Edward Elgar Publishing.
    8. Sahu, Prasanta K. & Qureshi, Danish & Pani, Agnivesh, 2022. "Examining commercial vehicle fleet ownership decisions and the mediating role of freight generation: A structural equation modeling assessment," Transport Policy, Elsevier, vol. 126(C), pages 26-33.
    9. Keya, Nowreen & Anowar, Sabreena & Eluru, Naveen, 2019. "Joint model of freight mode choice and shipment size: A copula-based random regret minimization framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 97-115.
    10. Stephane Hess, 2014. "Latent class structures: taste heterogeneity and beyond," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 14, pages 311-330, Edward Elgar Publishing.
    11. Günay, Gürkan, 2023. "Shipment size and vehicle choice modeling for road freight transport: A geographical perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    12. Verena Maria Stockhammer & Sarah Pfoser & Karin Markvica & Jürgen Zajicek & Matthias Prandtstetter, 2021. "Behavioural Biases Distorting the Demand for Environmentally Friendly Freight Transport Modes: An Overview and Potential Measures," Sustainability, MDPI, vol. 13(21), pages 1-34, October.
    13. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    14. An, Wookhyun & Alarcón, Silverio, 2021. "Rural tourism preferences in Spain: Best-worst choices," Annals of Tourism Research, Elsevier, vol. 89(C).
    15. Shin, Jungwoo & Hwang, Won-Sik, 2017. "Consumer preference and willingness to pay for a renewable fuel standard (RFS) policy: Focusing on ex-ante market analysis and segmentation," Energy Policy, Elsevier, vol. 106(C), pages 32-40.
    16. de Ayala, Amaia & Hoyos, David & Mariel, Petr, 2015. "Suitability of discrete choice experiments for landscape management under the European Landscape Convention," Journal of Forest Economics, Elsevier, vol. 21(2), pages 79-96.
    17. Stefano Ceolotto & Eleanor Denny, 2021. "Putting a new 'spin' on energy labels: measuring the impact of reframing energy efficiency on tumble dryer choices in a multi-country experiment," Trinity Economics Papers tep1521, Trinity College Dublin, Department of Economics.
    18. Martínez-Pardo, Ana & Orro, Alfonso & Garcia-Alonso, Lorena, 2020. "Analysis of port choice: A methodological proposal adjusted with public data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 178-193.
    19. Chen, Gang & Ratcliffe, Julie & Milte, Rachel & Khadka, Jyoti & Kaambwa, Billingsley, 2021. "Quality of care experience in aged care: An Australia-Wide discrete choice experiment to elicit preference weights," Social Science & Medicine, Elsevier, vol. 289(C).
    20. Ahmad Adeel & Bruno Notteboom & Ansar Yasar & Kris Scheerlinck & Jeroen Stevens, 2021. "Sustainable Streetscape and Built Environment Designs around BRT Stations: A Stated Choice Experiment Using 3D Visualizations," Sustainability, MDPI, vol. 13(12), pages 1-21, June.

    More about this item

    Keywords

    FREIGHT TRANSPORT; SHIPMENT SIZE CHOICE; TOTAL LOGISTICS COST; SEGMENTATION UNIVERSALITY; TRANSPORT DE MARCHANDISE;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04117547. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.