IDEAS home Printed from https://ideas.repec.org/p/foi/wpaper/2020_13.html
   My bibliography  Save this paper

Incorporating quality in economic regulatory benchmarking

Author

Listed:
  • Emil Heesche

    (Department of Food and Resource Economics, University of Copenhagen)

  • Mette Asmild

    (Department of Food and Resource Economics, University of Copenhagen)

Abstract

The Danish water regulator uses, among other things, Data Envelopment Analysis to create a pseudo-competitive environment for the water companies. The benchmarking results are used to set an individual revenue cap for each company. The benchmarking model is currently criticized for not including the companies’ supply quality and thereby has an omitted variable bias problem. The regulator has, therefore, initiated an extensive effort to try to incorporate supply quality in the regulation. One problem the regulator has encountered is that incorporating supply quality in the benchmarking model tends to increase the revenue caps more than desired. The regulator does, however, not have any prior information about the quality variables and their trade-offs to the remaining variables which make it challenging to reduce the supply quality’s impact on the revenue caps. In this paper, we analyze the facet structure when incorporating three quality variables into the existing model. The facet structure gives important insights into the trade-offs between the companies costs and their level of quality. We argue that it is generally sensible to investigate the facet structure and ensure that it is trustworthy before calculating efficiency scores, in order to increase the credibility of the results. By using an outlier detection model on the estimated trade-offs we use the insights for the facet structure to create weight restrictions between costs and quality, which gives the companies incentives to reveal private information about their true trade-offs. This can help the regulator incorporate quality in the model without allowing the efficiency scores to increase excessively due to the increase in dimensionality. In addition, we propose to set weight restrictions based on the consumer’s willingness to pay for quality to avoid the companies choosing a level of quality that is higher than what the consumers are willing to pay.

Suggested Citation

  • Emil Heesche & Mette Asmild, 2020. "Incorporating quality in economic regulatory benchmarking," IFRO Working Paper 2020/13, University of Copenhagen, Department of Food and Resource Economics.
  • Handle: RePEc:foi:wpaper:2020_13
    as

    Download full text from publisher

    File URL: http://okonomi.foi.dk/workingpapers/WPpdf/WP2020/IFRO_WP_2020_13.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. PER AGRELL & Peter Bogetoft & Jørgen Tind, 2005. "DEA and Dynamic Yardstick Competition in Scandinavian Electricity Distribution," Journal of Productivity Analysis, Springer, vol. 23(2), pages 173-201, May.
    2. Ole B. Olesen & Niels Chr. Petersen, 2015. "Facet Analysis in Data Envelopment Analysis," International Series in Operations Research & Management Science, in: Joe Zhu (ed.), Data Envelopment Analysis, edition 127, chapter 6, pages 145-190, Springer.
    3. O. B. Olesen & N. C. Petersen, 1996. "Indicators of Ill-Conditioned Data Sets and Model Misspecification in Data Envelopment Analysis: An Extended Facet Approach," Management Science, INFORMS, vol. 42(2), pages 205-219, February.
    4. Ramanathan, Ramakrishnan & Ramanathan, Usha & Bentley, Yongmei, 2018. "The debate on flexibility of environmental regulations, innovation capabilities and financial performance – A novel use of DEA," Omega, Elsevier, vol. 75(C), pages 131-138.
    5. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    6. Emil Heesche & Mette Asmild, 2020. "Controlling for environmental conditions in regulatory benchmarking," IFRO Working Paper 2020/03, University of Copenhagen, Department of Food and Resource Economics.
    7. Asmild, Mette & Paradi, Joseph C. & Reese, David N., 2006. "Theoretical perspectives of trade-off analysis using DEA," Omega, Elsevier, vol. 34(4), pages 337-343, August.
    8. Hubert, M. & Vandervieren, E., 2008. "An adjusted boxplot for skewed distributions," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5186-5201, August.
    9. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    10. Podinovski, Victor V., 2019. "Direct estimation of marginal characteristics of nonparametric production frontiers in the presence of undesirable outputs," European Journal of Operational Research, Elsevier, vol. 279(1), pages 258-276.
    11. Scheel, Holger, 2001. "Undesirable outputs in efficiency valuations," European Journal of Operational Research, Elsevier, vol. 132(2), pages 400-410, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emil Heesche & Peter Bogetoft, 2021. "Incentives in regulatory DEA models with discretionary outputs: The case of Danish water regulation," IFRO Working Paper 2021/04, University of Copenhagen, Department of Food and Resource Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heesche, Emil & Asmild, Mette, 2022. "Incorporating quality in economic regulatory benchmarking," Omega, Elsevier, vol. 110(C).
    2. Emil Heesche & Mette Asmild, 2022. "Implications of Aggregation Uncertainty in DEA," IFRO Working Paper 2022/02, University of Copenhagen, Department of Food and Resource Economics.
    3. Cook, Wade D. & Seiford, Larry M., 2009. "Data envelopment analysis (DEA) - Thirty years on," European Journal of Operational Research, Elsevier, vol. 192(1), pages 1-17, January.
    4. Emil Heesche & Peter Bogetoft, 2021. "Incentives in regulatory DEA models with discretionary outputs: The case of Danish water regulation," IFRO Working Paper 2021/04, University of Copenhagen, Department of Food and Resource Economics.
    5. Amineh Ghazi & Farhad Hosseinzadeh Lotfi & Masoud Sanei, 2020. "Hybrid efficiency measurement and target setting based on identifying defining hyperplanes of the PPS with negative data," Operational Research, Springer, vol. 20(2), pages 1055-1092, June.
    6. Andreas Dellnitz & Elmar Reucher & Andreas Kleine, 2021. "Efficiency evaluation in data envelopment analysis using strong defining hyperplanes," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(2), pages 441-465, June.
    7. Nicole Adler & Georg Hirte & Shravana Kumar & Hans-Martin Niemeier, 2022. "The impact of specialization, ownership, competition and regulation on efficiency: a case study of Indian seaports," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 24(3), pages 507-536, September.
    8. Imane Bounadi & Khalil Allali & Aziz Fadlaoui & Mohammed Dehhaoui, 2023. "Water Pollution Abatement in Olive Oil Industry in Morocco: Cost Estimates and Policy Implications," Sustainability, MDPI, vol. 15(5), pages 1-19, February.
    9. Toloo, Mehdi & Hančlová, Jana, 2020. "Multi-valued measures in DEA in the presence of undesirable outputs," Omega, Elsevier, vol. 94(C).
    10. Agrell, Per J. & Brea-Solís, Humberto, 2017. "Capturing heterogeneity in electricity distribution operations: A critical review of latent class modelling," Energy Policy, Elsevier, vol. 104(C), pages 361-372.
    11. Kao, Chiang, 2020. "Measuring efficiency in a general production possibility set allowing for negative data," European Journal of Operational Research, Elsevier, vol. 282(3), pages 980-988.
    12. Michael Hellwig & Dominik Schober & Luis Cabral, 2018. "Incentive Regulation: Evidence From German Electricity Networks," Working Papers 18-03, New York University, Leonard N. Stern School of Business, Department of Economics.
    13. OA Carboni & P. Russu, 2014. "Measuring Environmental and Economic Efficiency in Italy: an Application of the Malmquist-DEA and Grey Forecasting Model," Working Paper CRENoS 201401, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    14. Cheng, Xiaomei & Bjørndal, Endre & Bjørndal, Mette, 2014. "Cost Efficiency Analysis based on The DEA and StoNED Models: Case of Norwegian Electricity Distribution Companies," Discussion Papers 2014/28, Norwegian School of Economics, Department of Business and Management Science.
    15. Hirofumi Fukuyama & Yong Tan, 2021. "Corporate social behaviour: Is it good for efficiency in the Chinese banking industry?," Annals of Operations Research, Springer, vol. 306(1), pages 383-413, November.
    16. Kuosmanen, Timo, 2012. "Stochastic semi-nonparametric frontier estimation of electricity distribution networks: Application of the StoNED method in the Finnish regulatory model," Energy Economics, Elsevier, vol. 34(6), pages 2189-2199.
    17. Dakpo, Hervé K & Jeanneaux, Philippe & Latruffe, Laure, 2014. "Inclusion of undesirable outputs in production technology modeling: The case of greenhouse gas emissions in French meat sheep farming," Working Papers 207806, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    18. Waidelich, Paul & Haug, Tomas & Wieshammer, Lorenz, 2022. "German efficiency gone wrong: Unintended incentives arising from the gas TSOs’ benchmarking," Energy Policy, Elsevier, vol. 160(C).
    19. Chen, Nengcheng & Xu, Lei & Chen, Zeqiang, 2017. "Environmental efficiency analysis of the Yangtze River Economic Zone using super efficiency data envelopment analysis (SEDEA) and tobit models," Energy, Elsevier, vol. 134(C), pages 659-671.
    20. Agrell, Per J. & Teusch, Jonas, 2020. "Predictability and strategic behavior under frontier regulation," Energy Policy, Elsevier, vol. 137(C).

    More about this item

    Keywords

    Data Envelopment Analysis; Regulation; Facet structure; Weight restrictions; Trade-off;
    All these keywords.

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C67 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Input-Output Models
    • L51 - Industrial Organization - - Regulation and Industrial Policy - - - Economics of Regulation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:foi:wpaper:2020_13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Geir Tveit (email available below). General contact details of provider: https://edirc.repec.org/data/foikudk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.