Advanced Search
MyIDEAS: Login

The Method of Simulated Scores for Estimating Multinormal Regression Models with Missing Values

Contents:

Author Info

Abstract

Given a set of continuous variables with missing data, we prove in this paper that the iterative application of a simple “least-squares estimation/multivariate normal simulation” procedure produces an efficient parameters estimator. There are two main assumptions behind our proof: (1) the missing data mechanism is ignorable; (2) the data generating process is a multivariate normal linear regression. Disentangling the iterative procedure and its convergence conditions, we show that the estimator is a “method of simulated scores” (a particular case of McFadden’s “method of simulated moments”), thus equivalent to maximum likelihood if the number of replications is conveniently large. We thus provide a non-Bayesian re-interpretation of the estimation/simulation problem. The computational procedure is obtained introducing a simple modification into existing algorithms. Its software implementation is straightforward (few simple statements in any programming language) and easily applicable to datasets with large number of variables.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://local.disia.unifi.it/ricerca/pubblicazioni/working_papers/2010/wp2010_01.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti" in its series Econometrics Working Papers Archive with number wp2010_01.

as in new window
Length: 29
Date of creation: Jan 2010
Date of revision:
Handle: RePEc:fir:econom:wp2010_01

Contact details of provider:
Postal: Viale G.B. Morgagni, 59 - I-50134 Firenze - Italy
Phone: +39 055 2751500
Fax: +39 055 4223560
Web page: http://www.disia.unifi.it/
More information through EDIRC

Related research

Keywords: Simulated scores; missing data; multivariate normal regression model; estimation/simulation; general pattern of missingness; simultaneous equations; structural form; reduced form;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Pollock, D. S. G., 2003. "Recursive estimation in econometrics," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 37-75, October.
  2. Belsley, David A. & John Kontoghiorghes, Erricos, 2005. "Second Special issue on Computational Econometrics," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 283-285, April.
  3. Vassilis A. Hajivassiliou, 1991. "Simulation Estimation Methods for Limited Dependent Variable Models," Cowles Foundation Discussion Papers 1007, Cowles Foundation for Research in Economics, Yale University.
  4. Bianchi, Carlo & Calzolari, Giorgio & Corsi, Paolo, 1978. "A Program for Stochastic Simulation of Econometric Models," Econometrica, Econometric Society, vol. 46(1), pages 235-36, January.
  5. Paul Kofman & Ian G. Sharpe, 2003. "Using Multiple Imputation in the Analysis of Incomplete Observations in Finance," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 1(2), pages 216-249.
  6. Foschi, Paolo & Belsley, David A. & Kontoghiorghes, Erricos J., 2003. "A comparative study of algorithms for solving seemingly unrelated regressions models," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 3-35, October.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:fir:econom:wp2010_01. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Francesco Calvori).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.