IDEAS home Printed from https://ideas.repec.org/p/eti/dpaper/16066.html
   My bibliography  Save this paper

The Effects of Artificial Intelligence and Robotics on Business and Employment: Evidence from a survey on Japanese firms

Author

Listed:
  • MORIKAWA Masayuki

Abstract

This study presents new evidence on firms' attitudes toward artificial intelligence (AI) and robotics, as well as their attitude toward the impacts of these new technologies on future business and employment prospects. The data used in this paper are the results of our original survey of more than 3,000 Japanese firms. The major findings can be summarized as follows. First, firms operating in the service industry have a positive attitude on the effects of AI-related technologies, suggesting the importance of paying attention to "AI-using industries." Second, we observe complementarity between AI-related technologies and the skill level of employees. This finding suggests that in order to accelerate the development and diffusion of AI and to maintain employment opportunities, it will be necessary to upgrade human capital. Third, firms that engage in global markets tend to have a positive attitude toward the impacts of AI-related technologies, indicating that globalization of economic activities will facilitate the development and diffusion of these new technologies.

Suggested Citation

  • MORIKAWA Masayuki, 2016. "The Effects of Artificial Intelligence and Robotics on Business and Employment: Evidence from a survey on Japanese firms," Discussion papers 16066, Research Institute of Economy, Trade and Industry (RIETI).
  • Handle: RePEc:eti:dpaper:16066
    as

    Download full text from publisher

    File URL: https://www.rieti.go.jp/jp/publications/dp/16e066.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Georg Graetz & Guy Michaels, 2018. "Robots at Work," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 753-768, December.
    2. Alan B. Krueger, 1993. "How Computers Have Changed the Wage Structure: Evidence from Microdata, 1984–1989," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(1), pages 33-60.
    3. Van Reenen, John, 2011. "Wage inequality, technology and trade: 21st century evidence," Labour Economics, Elsevier, vol. 18(6), pages 730-741.
    4. Timothy F. Bresnahan & Erik Brynjolfsson & Lorin M. Hitt, 2002. "Information Technology, Workplace Organization, and the Demand for Skilled Labor: Firm-Level Evidence," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 117(1), pages 339-376.
    5. Maarten Goos & Alan Manning, 2007. "Lousy and Lovely Jobs: The Rising Polarization of Work in Britain," The Review of Economics and Statistics, MIT Press, vol. 89(1), pages 118-133, February.
    6. John G. Fernald, 2015. "Productivity and Potential Output before, during, and after the Great Recession," NBER Macroeconomics Annual, University of Chicago Press, vol. 29(1), pages 1-51.
    7. Lechevalier, Sébastien & Nishimura, Junichi & Storz, Cornelia, 2014. "Diversity in patterns of industry evolution: How an intrapreneurial regime contributed to the emergence of the service robot industry," Research Policy, Elsevier, vol. 43(10), pages 1716-1729.
    8. Frey, Carl Benedikt & Osborne, Michael A., 2017. "The future of employment: How susceptible are jobs to computerisation?," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 254-280.
    9. David H. Autor, 2015. "Why Are There Still So Many Jobs? The History and Future of Workplace Automation," Journal of Economic Perspectives, American Economic Association, vol. 29(3), pages 3-30, Summer.
    10. William D. Nordhaus, 2021. "Are We Approaching an Economic Singularity? Information Technology and the Future of Economic Growth," American Economic Journal: Macroeconomics, American Economic Association, vol. 13(1), pages 299-332, January.
    11. Maarten Goos & Alan Manning & Anna Salomons, 2014. "Explaining Job Polarization: Routine-Biased Technological Change and Offshoring," American Economic Review, American Economic Association, vol. 104(8), pages 2509-2526, August.
    12. Masayuki Morikawa, 2015. "Postgraduate Education and Labor Market Outcomes: An Empirical Analysis Using Micro Data from Japan," Industrial Relations: A Journal of Economy and Society, Wiley Blackwell, vol. 54(3), pages 499-520, July.
    13. Kevin J. Stiroh, 2002. "Information Technology and the U.S. Productivity Revival: What Do the Industry Data Say?," American Economic Review, American Economic Association, vol. 92(5), pages 1559-1576, December.
    14. Georg Graetz & Guy Michaels, 2015. "Robots at work: the impact on productivity and jobs," CentrePiece - The magazine for economic performance 447, Centre for Economic Performance, LSE.
    15. Joel Mokyr & Chris Vickers & Nicolas L. Ziebarth, 2015. "The History of Technological Anxiety and the Future of Economic Growth: Is This Time Different?," Journal of Economic Perspectives, American Economic Association, vol. 29(3), pages 31-50, Summer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kang, David Yeonjun & Hur, Won-Moo & Shin, Yuhyung, 2023. "Smart technology and service employees’ job crafting: Relationship between STARA awareness, performance pressure, receiving and giving help, and job crafting," Journal of Retailing and Consumer Services, Elsevier, vol. 73(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. MIYAKAWA Daisuke & MIYAUCHI Yuhei & Christian PEREZ, 2017. "Who Are Afraid of Losing Their Jobs to Artificial Intelligence and Robots? Evidence from a survey," Discussion papers 17069, Research Institute of Economy, Trade and Industry (RIETI).
    2. Morikawa, Masayuki, 2017. "Who Are Afraid of Losing Their Jobs to Artificial Intelligence and Robots? Evidence from a Survey," GLO Discussion Paper Series 71, Global Labor Organization (GLO).
    3. Masayuki Morikawa, 2017. "Firms' Expectations About The Impact Of Ai And Robotics: Evidence From A Survey," Economic Inquiry, Western Economic Association International, vol. 55(2), pages 1054-1063, April.
    4. Morikawa, Masayuki, 2017. "Who Are Afraid of Losing Their Jobs to Artificial Intelligence and Robots? Evidence from a Survey," GLO Discussion Paper Series 71, Global Labor Organization (GLO).
    5. Gregory, Terry & Salomons, Anna & Zierahn, Ulrich, 2016. "Racing With or Against the Machine? Evidence from Europe," VfS Annual Conference 2016 (Augsburg): Demographic Change 145843, Verein für Socialpolitik / German Economic Association.
    6. Cirillo, Valeria & Evangelista, Rinaldo & Guarascio, Dario & Sostero, Matteo, 2021. "Digitalization, routineness and employment: An exploration on Italian task-based data," Research Policy, Elsevier, vol. 50(7).
    7. David J. Deming, 2017. "The Growing Importance of Social Skills in the Labor Market," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 132(4), pages 1593-1640.
    8. Heyman, Fredrik, 2016. "Job polarization, job tasks and the role of firms," Economics Letters, Elsevier, vol. 145(C), pages 246-251.
    9. Arntz, Melanie & Gregory, Terry & Zierahn, Ulrich, 2016. "ELS issues in robotics and steps to consider them. Part 1: Robotics and employment. Consequences of robotics and technological change for the structure and level of employment," ZEW Expertises, ZEW - Leibniz Centre for European Economic Research, number 146501.
    10. Davide Dottori, 2021. "Robots and employment: evidence from Italy," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 38(2), pages 739-795, July.
    11. Cortes, Guido Matias & Salvatori, Andrea, 2019. "Delving into the demand side: Changes in workplace specialization and job polarization," Labour Economics, Elsevier, vol. 57(C), pages 164-176.
    12. Robert Stehrer, 2022. "The Impact of ICT and Intangible Capital Accumulation on Labour Demand Growth and Functional Income Shares," wiiw Working Papers 218, The Vienna Institute for International Economic Studies, wiiw.
    13. Graetz, Georg, 2020. "Technological change and the Swedish labor market," Working Paper Series 2020:19, IFAU - Institute for Evaluation of Labour Market and Education Policy.
    14. Rita K. Almeida & Ana M. Fernandes & Mariana Viollaz, 2017. "Does the Adoption of Complex Software Impact Employment Composition and the Skill Content of Occupations? Evidence from Chilean Firms," CEDLAS, Working Papers 0214, CEDLAS, Universidad Nacional de La Plata.
    15. Filippo Bertani & Marco Raberto & Andrea Teglio, 2020. "The productivity and unemployment effects of the digital transformation: an empirical and modelling assessment," Review of Evolutionary Political Economy, Springer, vol. 1(3), pages 329-355, November.
    16. Caselli, Mauro & Fracasso, Andrea & Scicchitano, Sergio & Traverso, Silvio & Tundis, Enrico, 2021. "Stop worrying and love the robot: An activity-based approach to assess the impact of robotization on employment dynamics," GLO Discussion Paper Series 802, Global Labor Organization (GLO).
    17. Gunther Tichy, 2016. "Geht der Arbeitsgesellschaft die Arbeit aus?," WIFO Monatsberichte (monthly reports), WIFO, vol. 89(12), pages 853-871, December.
    18. Thor Berger & Carl Benedikt Frey, 2016. "Structural Transformation in the OECD: Digitalisation, Deindustrialisation and the Future of Work," OECD Social, Employment and Migration Working Papers 193, OECD Publishing.
    19. Czarnitzki, Dirk & Fernández, Gastón P. & Rammer, Christian, 2023. "Artificial intelligence and firm-level productivity," Journal of Economic Behavior & Organization, Elsevier, vol. 211(C), pages 188-205.
    20. T. Gries & R. Grundmann & I. Palnau & M. Redlin, 2017. "Innovations, growth and participation in advanced economies - a review of major concepts and findings," International Economics and Economic Policy, Springer, vol. 14(2), pages 293-351, April.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eti:dpaper:16066. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: TANIMOTO, Toko (email available below). General contact details of provider: https://edirc.repec.org/data/rietijp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.