IDEAS home Printed from https://ideas.repec.org/p/esr/wpaper/wp657.html
   My bibliography  Save this paper

Climate policy costs of spatially unbalanced growth in electricity demand: the case of datacentres

Author

Listed:
  • Fitiwi, Desta
  • Lynch, Muireann Á.

Abstract

No abstract is available for this item.

Suggested Citation

  • Fitiwi, Desta & Lynch, Muireann Á., 2020. "Climate policy costs of spatially unbalanced growth in electricity demand: the case of datacentres," Papers WP657, Economic and Social Research Institute (ESRI).
  • Handle: RePEc:esr:wpaper:wp657
    as

    Download full text from publisher

    File URL: https://www.esri.ie/pubs/WP657.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Depoorter, Victor & Oró, Eduard & Salom, Jaume, 2015. "The location as an energy efficiency and renewable energy supply measure for data centres in Europe," Applied Energy, Elsevier, vol. 140(C), pages 338-349.
    2. Bird, Lori & Chapman, Caroline & Logan, Jeff & Sumner, Jenny & Short, Walter, 2011. "Evaluating renewable portfolio standards and carbon cap scenarios in the U.S. electric sector," Energy Policy, Elsevier, vol. 39(5), pages 2573-2585, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brown, Marilyn A. & Gumerman, Etan & Sun, Xiaojing & Sercy, Kenneth & Kim, Gyungwon, 2012. "Myths and facts about electricity in the U.S. South," Energy Policy, Elsevier, vol. 40(C), pages 231-241.
    2. Wang, Fengjuan & Lv, Chengwei & Xu, Jiuping, 2023. "Carbon awareness oriented data center location and configuration: An integrated optimization method," Energy, Elsevier, vol. 278(C).
    3. Gonocruz, Ruth Anne Tanlioco & Yoshida, Yoshikuni & Ozawa, Akito & Aguirre, Rodolfo A. & Maguindayao, Edward Joseph H., 2023. "Impacts of agrivoltaics in rural electrification and decarbonization in the Philippines," Applied Energy, Elsevier, vol. 350(C).
    4. Barbose, Galen & Bird, Lori & Heeter, Jenny & Flores-Espino, Francisco & Wiser, Ryan, 2015. "Costs and benefits of renewables portfolio standards in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 523-533.
    5. Stinner, Sebastian & Huchtemann, Kristian & Müller, Dirk, 2016. "Quantifying the operational flexibility of building energy systems with thermal energy storages," Applied Energy, Elsevier, vol. 181(C), pages 140-154.
    6. Wang, Delu & Li, Chunxiao & Mao, Jinqi & Yang, Qing, 2023. "What affects the implementation of the renewable portfolio standard? An analysis of the four-party evolutionary game," Renewable Energy, Elsevier, vol. 204(C), pages 250-261.
    7. Jerez Monsalves, Juan & Bergaentzlé, Claire & Keles, Dogan, 2023. "Impacts of flexible-cooling and waste-heat recovery from data centres on energy systems: A Danish case study," Energy, Elsevier, vol. 281(C).
    8. Anthony Oliver & Madhu Khanna, 2018. "The spatial distribution of welfare costs of Renewable Portfolio Standards in the United States electricity sector," Letters in Spatial and Resource Sciences, Springer, vol. 11(3), pages 269-287, October.
    9. Yin, Guangzhi & Duan, Maosheng, 2022. "Pricing the deep peak regulation service of coal-fired power plants to promote renewable energy integration," Applied Energy, Elsevier, vol. 321(C).
    10. James McFarland & Yuyu Zhou & Leon Clarke & Patrick Sullivan & Jesse Colman & Wendy Jaglom & Michelle Colley & Pralit Patel & Jiyon Eom & Son Kim & G. Kyle & Peter Schultz & Boddu Venkatesh & Juanita , 2015. "Impacts of rising air temperatures and emissions mitigation on electricity demand and supply in the United States: a multi-model comparison," Climatic Change, Springer, vol. 131(1), pages 111-125, July.
    11. Petrović, Stefan & Colangelo, Alessandro & Balyk, Olexandr & Delmastro, Chiara & Gargiulo, Maurizio & Simonsen, Mikkel Bosack & Karlsson, Kenneth, 2020. "The role of data centres in the future Danish energy system," Energy, Elsevier, vol. 194(C).
    12. Li, Jian & Jurasz, Jakub & Li, Hailong & Tao, Wen-Quan & Duan, Yuanyuan & Yan, Jinyue, 2020. "A new indicator for a fair comparison on the energy performance of data centers," Applied Energy, Elsevier, vol. 276(C).
    13. Xin-gang, Zhao & Yi, Zuo & Hui, Wang & Zhen, Wang, 2022. "How can the cost and effectiveness of renewable portfolio standards be coordinated? Incentive mechanism design from the coevolution perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    14. Yeh, Sonia & Burtraw, Dallas & Sterner, Thomas & Greene, David, 2021. "Tradable performance standards in the transportation sector," Energy Economics, Elsevier, vol. 102(C).
    15. Cho, Jinkyun & Kim, Yundeok, 2016. "Improving energy efficiency of dedicated cooling system and its contribution towards meeting an energy-optimized data center," Applied Energy, Elsevier, vol. 165(C), pages 967-982.
    16. Schell, Kristen R. & Claro, João & Fischbeck, Paul, 2015. "Geographic attribution of an electricity system renewable energy target: Local economic, social and environmental tradeoffs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 884-902.
    17. Chu, Wen-Xiao & Wang, Chi-Chuan, 2019. "A review on airflow management in data centers," Applied Energy, Elsevier, vol. 240(C), pages 84-119.
    18. Wang, Hongye & Su, Bin & Mu, Hailin & Li, Nan & Jiang, Bo & Kong, Xue, 2019. "Optimization of electricity generation and interprovincial trading strategies in Southern China," Energy, Elsevier, vol. 174(C), pages 696-707.
    19. Timothy D. Mount, Surin Maneevitjit, Alberto J. Lamadrid, Ray D. Zimmerman, and Robert J. Thomas, 2012. "The Hidden System Costs of Wind Generation in a Deregulated Electricity Market," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    20. Huang, Pei & Copertaro, Benedetta & Zhang, Xingxing & Shen, Jingchun & Löfgren, Isabelle & Rönnelid, Mats & Fahlen, Jan & Andersson, Dan & Svanfeldt, Mikael, 2020. "A review of data centers as prosumers in district energy systems: Renewable energy integration and waste heat reuse for district heating," Applied Energy, Elsevier, vol. 258(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:esr:wpaper:wp657. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Burns (email available below). General contact details of provider: https://edirc.repec.org/data/esriiie.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.