IDEAS home Printed from https://ideas.repec.org/p/ems/eureir/545.html
   My bibliography  Save this paper

An interior-point and decomposition approach to multiple stage stochastic programming

Author

Listed:
  • Zhang, S.

Abstract

There is no abstract of this report

Suggested Citation

  • Zhang, S., 2002. "An interior-point and decomposition approach to multiple stage stochastic programming," Econometric Institute Research Papers EI 2002-35, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  • Handle: RePEc:ems:eureir:545
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/545/feweco20021002154200.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. R. T. Rockafellar & Roger J.-B. Wets, 1991. "Scenarios and Policy Aggregation in Optimization Under Uncertainty," Mathematics of Operations Research, INFORMS, vol. 16(1), pages 119-147, February.
    2. Yinyu Ye & Michael J. Todd & Shinji Mizuno, 1994. "An O(√nL)-Iteration Homogeneous and Self-Dual Linear Programming Algorithm," Mathematics of Operations Research, INFORMS, vol. 19(1), pages 53-67, February.
    3. Shinji Mizuno & Michael J. Todd & Yinyu Ye, 1993. "On Adaptive-Step Primal-Dual Interior-Point Algorithms for Linear Programming," Mathematics of Operations Research, INFORMS, vol. 18(4), pages 964-981, November.
    4. John M. Mulvey & Andrzej Ruszczyński, 1995. "A New Scenario Decomposition Method for Large-Scale Stochastic Optimization," Operations Research, INFORMS, vol. 43(3), pages 477-490, June.
    5. John R. Birge & Liqun Qi, 1988. "Computing Block-Angular Karmarkar Projections with Applications to Stochastic Programming," Management Science, INFORMS, vol. 34(12), pages 1472-1479, December.
    6. Jacek Gondzio & Roy Kouwenberg, 2001. "High-Performance Computing for Asset-Liability Management," Operations Research, INFORMS, vol. 49(6), pages 879-891, December.
    7. Stein W. Wallace & Stein-Erik Fleten, 2002. "Stochastic programming in energy," GE, Growth, Math methods 0201001, University Library of Munich, Germany, revised 13 Nov 2003.
    8. Berkelaar, A.B. & Dert, C.L. & Oldenkamp, K.P.B. & Zhang, S., 1999. "A primal-dual decomposition based interior point approach to two-stage stochastic linear programming," Econometric Institute Research Papers EI 9918-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    9. Berkelaar, Arjan & Dert, Cees & Oldenkamp, Bart, 1999. "A primal-dual decompsition-based interior point approach to two-stage stochastic linear programming," Serie Research Memoranda 0026, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    10. Arjan B. Berkelaar & K. P. Bart Oldenkamp & Cees L. Dert, 1999. "A Primal-Dual Decomposition-Based Interior-Point Approach to Two-Stage Stochastic Programming," Computing in Economics and Finance 1999 151, Society for Computational Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. X. W. Liu & M. Fukushima, 2006. "Parallelizable Preprocessing Method for Multistage Stochastic Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 131(3), pages 327-346, December.
    2. Jie Sun & Xinwei Liu, 2006. "Scenario Formulation of Stochastic Linear Programs and the Homogeneous Self-Dual Interior-Point Method," INFORMS Journal on Computing, INFORMS, vol. 18(4), pages 444-454, November.
    3. Arjen Siegmann & André Lucas, 2005. "Discrete-Time Financial Planning Models Under Loss-Averse Preferences," Operations Research, INFORMS, vol. 53(3), pages 403-414, June.
    4. Ankur Kulkarni & Uday Shanbhag, 2012. "Recourse-based stochastic nonlinear programming: properties and Benders-SQP algorithms," Computational Optimization and Applications, Springer, vol. 51(1), pages 77-123, January.
    5. Valle, C.A. & Meade, N. & Beasley, J.E., 2014. "Absolute return portfolios," Omega, Elsevier, vol. 45(C), pages 20-41.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. X. W. Liu & M. Fukushima, 2006. "Parallelizable Preprocessing Method for Multistage Stochastic Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 131(3), pages 327-346, December.
    2. Berkelaar, A.B. & Dert, C.L. & Oldenkamp, K.P.B. & Zhang, S., 1999. "A primal-dual decomposition based interior point approach to two-stage stochastic linear programming," Econometric Institute Research Papers EI 9918-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    3. V.I. Norkin & G.C. Pflug & A. Ruszczynski, 1996. "A Branch and Bound Method for Stochastic Global Optimization," Working Papers wp96065, International Institute for Applied Systems Analysis.
    4. G. Y. Zhao, 1999. "Interior-Point Methods with Decomposition for Solving Large-Scale Linear Programs," Journal of Optimization Theory and Applications, Springer, vol. 102(1), pages 169-192, July.
    5. Cooper, W. W. & Hemphill, H. & Huang, Z. & Li, S. & Lelas, V. & Sullivan, D. W., 1997. "Survey of mathematical programming models in air pollution management," European Journal of Operational Research, Elsevier, vol. 96(1), pages 1-35, January.
    6. Jesús Latorre & Santiago Cerisola & Andrés Ramos & Rafael Palacios, 2009. "Analysis of stochastic problem decomposition algorithms in computational grids," Annals of Operations Research, Springer, vol. 166(1), pages 355-373, February.
    7. Marco Colombo & Andreas Grothey, 2013. "A decomposition-based crash-start for stochastic programming," Computational Optimization and Applications, Springer, vol. 55(2), pages 311-340, June.
    8. Cosmin Petra & Mihai Anitescu, 2012. "A preconditioning technique for Schur complement systems arising in stochastic optimization," Computational Optimization and Applications, Springer, vol. 52(2), pages 315-344, June.
    9. Julia Higle & Suvrajeet Sen, 2006. "Multistage stochastic convex programs: Duality and its implications," Annals of Operations Research, Springer, vol. 142(1), pages 129-146, February.
    10. Jacek Gondzio & Roy Kouwenberg, 2001. "High-Performance Computing for Asset-Liability Management," Operations Research, INFORMS, vol. 49(6), pages 879-891, December.
    11. Fleten, Stein-Erik & Kristoffersen, Trine Krogh, 2007. "Stochastic programming for optimizing bidding strategies of a Nordic hydropower producer," European Journal of Operational Research, Elsevier, vol. 181(2), pages 916-928, September.
    12. Mehdi Karimi & Levent Tunçel, 2020. "Primal–Dual Interior-Point Methods for Domain-Driven Formulations," Mathematics of Operations Research, INFORMS, vol. 45(2), pages 591-621, May.
    13. Kuang-Yu Ding & Xin-Yee Lam & Kim-Chuan Toh, 2023. "On proximal augmented Lagrangian based decomposition methods for dual block-angular convex composite programming problems," Computational Optimization and Applications, Springer, vol. 86(1), pages 117-161, September.
    14. Sodhi, ManMohan S. & Tang, Christopher S., 2009. "Modeling supply-chain planning under demand uncertainty using stochastic programming: A survey motivated by asset-liability management," International Journal of Production Economics, Elsevier, vol. 121(2), pages 728-738, October.
    15. Schütz, Peter & Tomasgard, Asgeir, 2011. "The impact of flexibility on operational supply chain planning," International Journal of Production Economics, Elsevier, vol. 134(2), pages 300-311, December.
    16. Panos Parpas & Berç Rustem, 2007. "Computational Assessment of Nested Benders and Augmented Lagrangian Decomposition for Mean-Variance Multistage Stochastic Problems," INFORMS Journal on Computing, INFORMS, vol. 19(2), pages 239-247, May.
    17. Manuel Laguna, 1998. "Applying Robust Optimization to Capacity Expansion of One Location in Telecommunications with Demand Uncertainty," Management Science, INFORMS, vol. 44(11-Part-2), pages 101-110, November.
    18. Jie Sun & Xinwei Liu, 2006. "Scenario Formulation of Stochastic Linear Programs and the Homogeneous Self-Dual Interior-Point Method," INFORMS Journal on Computing, INFORMS, vol. 18(4), pages 444-454, November.
    19. Diana Barro & Elio Canestrelli, 2005. "Time and nodal decomposition with implicit non-anticipativity constraints in dynamic portfolio optimization," GE, Growth, Math methods 0510011, University Library of Munich, Germany.
    20. Dimitris Bertsimas & Omid Nohadani & Kwong Meng Teo, 2010. "Robust Optimization for Unconstrained Simulation-Based Problems," Operations Research, INFORMS, vol. 58(1), pages 161-178, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:545. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.