IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/26739.html
   My bibliography  Save this paper

Sort out your neighbourhood: public good games on dynamic networks

Author

Listed:
  • Spiekermann, Kai

Abstract

Axelrod (The evolution of cooperation, 1984) and others explain how cooperation can emerge in repeated 2-person prisoner’s dilemmas. But in public good games with anonymous contributions, we expect a breakdown of cooperation because direct reciprocity fails. However, if agents are situated in a social network determining which agents interact, and if they can influence the network, then cooperation can be a viable strategy. Social networks are modelled as graphs. Agents play public good games with their neighbours. After each game, they can terminate connections to others, and new connections are created. Cooperative agents do well because they manage to cluster with cooperators and avoid defectors. Computer simulations demonstrate that group formation and exclusion are powerful mechanisms to promote cooperation in dilemma situations. This explains why social dilemmas can often be solved if agents can choose with whom they interact.

Suggested Citation

  • Spiekermann, Kai, 2009. "Sort out your neighbourhood: public good games on dynamic networks," LSE Research Online Documents on Economics 26739, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:26739
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/26739/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ashlock, Dan & Smucker, Mark & Stanley, E. Ann & Tesfatsion, Leigh, 1994. "Preferential Partner Selection in an Evolutionary Study of Prisoner's Dilemma," ISU General Staff Papers 199409010700001033, Iowa State University, Department of Economics.
    2. Francisco C. Santos & Marta D. Santos & Jorge M. Pacheco, 2008. "Social diversity promotes the emergence of cooperation in public goods games," Nature, Nature, vol. 454(7201), pages 213-216, July.
    3. Leigh TESFATSION, 1995. "A Trade Network Game With Endogenous Partner Selection," Economic Report 36, Iowa State University Department of Economics.
    4. Venkatesh Bala & Sanjeev Goyal, 2000. "A Noncooperative Model of Network Formation," Econometrica, Econometric Society, vol. 68(5), pages 1181-1230, September.
    5. Hisashi Ohtsuki & Christoph Hauert & Erez Lieberman & Martin A. Nowak, 2006. "A simple rule for the evolution of cooperation on graphs and social networks," Nature, Nature, vol. 441(7092), pages 502-505, May.
    6. Erez Lieberman & Christoph Hauert & Martin A. Nowak, 2005. "Evolutionary dynamics on graphs," Nature, Nature, vol. 433(7023), pages 312-316, January.
    7. Vanderschraaf, Peter, 2006. "War Or Peace?: A Dynamical Analysis Of Anarchy," Economics and Philosophy, Cambridge University Press, vol. 22(2), pages 243-279, July.
    8. Steven H. Strogatz, 2001. "Exploring complex networks," Nature, Nature, vol. 410(6825), pages 268-276, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elsner, Wolfram & Schwardt, Henning, 2012. "Trust and Arena Size. Expectations, Trust, and Institutions Co-Evolving, and Their Critical Population and Group Sizes," MPRA Paper 40393, University Library of Munich, Germany.
    2. Schimit, P.H.T. & Santos, B.O. & Soares, C.A., 2015. "Evolution of cooperation in Axelrod tournament using cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 204-217.
    3. Elsner, Wolfram & Heinrich, Torsten, 2009. "A simple theory of 'meso'. On the co-evolution of institutions and platform size--With an application to varieties of capitalism and 'medium-sized' countries," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 38(5), pages 843-858, October.
    4. Li, Yixiao & Shen, Bin, 2013. "The coevolution of partner switching and strategy updating in non-excludable public goods game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 4956-4965.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Konno, Tomohiko, 2013. "An imperfect competition on scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5453-5460.
    2. D. Timothy Bishop & Mark Broom & Richard Southwell, 2020. "Chris Cannings: A Life in Games," Dynamic Games and Applications, Springer, vol. 10(3), pages 591-617, September.
    3. Fabio Della Rossa & Fabio Dercole & Anna Di Meglio, 2020. "Direct Reciprocity and Model-Predictive Strategy Update Explain the Network Reciprocity Observed in Socioeconomic Networks," Games, MDPI, vol. 11(1), pages 1-28, March.
    4. Sarkar, Bijan, 2021. "The cooperation–defection evolution on social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    5. Nesrine Ben Khalifa & Rachid El-Azouzi & Yezekael Hayel & Issam Mabrouki, 2017. "Evolutionary Games in Interacting Communities," Dynamic Games and Applications, Springer, vol. 7(2), pages 131-156, June.
    6. Flávio L Pinheiro & Jorge M Pacheco & Francisco C Santos, 2012. "From Local to Global Dilemmas in Social Networks," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-6, February.
    7. Kroumi, Dhaker & Lessard, Sabin, 2015. "Evolution of cooperation in a multidimensional phenotype space," Theoretical Population Biology, Elsevier, vol. 102(C), pages 60-75.
    8. Matthijs van Veelen & Benjamin Allen & Moshe Hoffman & Burton Simon & Carl Veller, 2016. "Inclusive Fitness," Tinbergen Institute Discussion Papers 16-055/I, Tinbergen Institute.
    9. Dario Madeo & Chiara Mocenni, 2018. "Self-regulation promotes cooperation in social networks," Papers 1807.07848, arXiv.org.
    10. Yanlong Zhang, 2015. "Partially and Wholly Overlapping Networks: The Evolutionary Dynamics of Social Dilemmas on Social Networks," Computational Economics, Springer;Society for Computational Economics, vol. 46(1), pages 1-14, June.
    11. Kyle Weishaar & Igor V. Erovenko, 2022. "The Evolution of Cooperation in Two-Dimensional Mobile Populations with Random and Strategic Dispersal," Games, MDPI, vol. 13(3), pages 1-16, May.
    12. Du, Faqi & Fu, Feng, 2013. "Quantifying the impact of noise on macroscopic organization of cooperation in spatial games," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 35-44.
    13. Li, Yixiao & Wang, Yi & Sheng, Jichuan, 2017. "The evolution of cooperation on geographical networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 485(C), pages 1-10.
    14. Lu, Kun & Wu, Bin & Li, Ming-chu & Wang, Zhen, 2014. "Other-regarding preference causing ping-pong effect in self-questioning game," Chaos, Solitons & Fractals, Elsevier, vol. 59(C), pages 51-58.
    15. Christian Hilbe & Maria Kleshnina & Kateřina Staňková, 2023. "Evolutionary Games and Applications: Fifty Years of ‘The Logic of Animal Conflict’," Dynamic Games and Applications, Springer, vol. 13(4), pages 1035-1048, December.
    16. Faqi Du & Feng Fu, 2011. "Partner Selection Shapes the Strategic and Topological Evolution of Cooperation," Dynamic Games and Applications, Springer, vol. 1(3), pages 354-369, September.
    17. Yao Meng & Sean P. Cornelius & Yang-Yu Liu & Aming Li, 2024. "Dynamics of collective cooperation under personalised strategy updates," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. Rodrigo J. Harrison & Roberto Munoz, 2003. "Stability and Equilibrium Selection in a Link Formation Game," Game Theory and Information 0306004, University Library of Munich, Germany.
    19. Tesfatsion, Leigh, 2001. "Structure, behavior, and market power in an evolutionary labor market with adaptive search," Journal of Economic Dynamics and Control, Elsevier, vol. 25(3-4), pages 419-457, March.
    20. R. Bentley & Michael O’Brien & Paul Ormerod, 2011. "Quality versus mere popularity: a conceptual map for understanding human behavior," Mind & Society: Cognitive Studies in Economics and Social Sciences, Springer;Fondazione Rosselli, vol. 10(2), pages 181-191, December.

    More about this item

    JEL classification:

    • J1 - Labor and Demographic Economics - - Demographic Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:26739. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.