IDEAS home Printed from https://ideas.repec.org/a/gam/jgames/v11y2020i1p16-d333258.html
   My bibliography  Save this article

Direct Reciprocity and Model-Predictive Strategy Update Explain the Network Reciprocity Observed in Socioeconomic Networks

Author

Listed:
  • Fabio Della Rossa

    (Department of Electronics, Information, and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
    Department of Electrical Engineering and Information Technology, Universita’ degli studi di Napoli, Federico II, 80125 Naples, Italy)

  • Fabio Dercole

    (Department of Electronics, Information, and Bioengineering, Politecnico di Milano, 20133 Milan, Italy)

  • Anna Di Meglio

    (Department of Electrical Engineering and Information Technology, Universita’ degli studi di Napoli, Federico II, 80125 Naples, Italy)

Abstract

Network reciprocity has been successfully put forward (since M. A. Nowak and R. May’s, 1992, influential paper) as the simplest mechanism—requiring no strategical complexity—supporting the evolution of cooperation in biological and socioeconomic systems. The mechanism is actually the network, which makes agents’ interactions localized, while network reciprocity is the property of the underlying evolutionary process to favor cooperation in sparse rather than dense networks. In theoretical models, the property holds under imitative evolutionary processes, whereas cooperation disappears in any network if imitation is replaced by the more rational best-response rule of strategy update. In social experiments, network reciprocity has been observed, although the imitative behavior did not emerge. What did emerge is a form of conditional cooperation based on direct reciprocity—the propensity to cooperate with neighbors who previously cooperated. To resolve this inconsistency, network reciprocity has been recently shown in a model that rationally confronts the two main behaviors emerging in experiments—reciprocal cooperation and unconditional defection—with rationality introduced by extending the best-response rule to a multi-step predictive horizon. However, direct reciprocity was implemented in a non-standard way, by allowing cooperative agents to temporarily cut the interaction with defecting neighbors. Here, we make this result robust to the way cooperators reciprocate, by implementing direct reciprocity with the standard tit-for-tat strategy and deriving similar results.

Suggested Citation

  • Fabio Della Rossa & Fabio Dercole & Anna Di Meglio, 2020. "Direct Reciprocity and Model-Predictive Strategy Update Explain the Network Reciprocity Observed in Socioeconomic Networks," Games, MDPI, vol. 11(1), pages 1-28, March.
  • Handle: RePEc:gam:jgames:v:11:y:2020:i:1:p:16-:d:333258
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-4336/11/1/16/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-4336/11/1/16/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Francisco C. Santos & Marta D. Santos & Jorge M. Pacheco, 2008. "Social diversity promotes the emergence of cooperation in public goods games," Nature, Nature, vol. 454(7201), pages 213-216, July.
    2. Axel Ockenfels & Gary E. Bolton, 2000. "ERC: A Theory of Equity, Reciprocity, and Competition," American Economic Review, American Economic Association, vol. 90(1), pages 166-193, March.
    3. Xuelong Li & Marko Jusup & Zhen Wang & Huijia Li & Lei Shi & Boris Podobnik & H. Eugene Stanley & Shlomo Havlin & Stefano Boccaletti, 2018. "Punishment diminishes the benefits of network reciprocity in social dilemma experiments," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 115(1), pages 30-35, January.
    4. Hisashi Ohtsuki & Christoph Hauert & Erez Lieberman & Martin A. Nowak, 2006. "A simple rule for the evolution of cooperation on graphs and social networks," Nature, Nature, vol. 441(7092), pages 502-505, May.
    5. Martin A. Nowak & Karl Sigmund, 1998. "Evolution of indirect reciprocity by image scoring," Nature, Nature, vol. 393(6685), pages 573-577, June.
    6. M.A. Nowak & K. Sigmund, 1998. "Evolution of Indirect Reciprocity by Image Scoring/ The Dynamics of Indirect Reciprocity," Working Papers ir98040, International Institute for Applied Systems Analysis.
    7. Vincent A. A. Jansen & Minus van Baalen, 2006. "Altruism through beard chromodynamics," Nature, Nature, vol. 440(7084), pages 663-666, March.
    8. Benjamin Allen & Gabor Lippner & Yu-Ting Chen & Babak Fotouhi & Naghmeh Momeni & Shing-Tung Yau & Martin A. Nowak, 2017. "Evolutionary dynamics on any population structure," Nature, Nature, vol. 544(7649), pages 227-230, April.
    9. Erez Lieberman & Christoph Hauert & Martin A. Nowak, 2005. "Evolutionary dynamics on graphs," Nature, Nature, vol. 433(7023), pages 312-316, January.
    10. Jelena Grujić & Torsten Röhl & Dirk Semmann & Manfred Milinski & Arne Traulsen, 2012. "Consistent Strategy Updating in Spatial and Non-Spatial Behavioral Experiments Does Not Promote Cooperation in Social Networks," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-8, November.
    11. Valerio Capraro, 2013. "A Model of Human Cooperation in Social Dilemmas," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-6, August.
    12. C. P. Roca & J. A. Cuesta & A. Sánchez, 2009. "Promotion of cooperation on networks? The myopic best response case," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(4), pages 587-595, October.
    13. Christoph Hauert & Michael Doebeli, 2004. "Spatial structure often inhibits the evolution of cooperation in the snowdrift game," Nature, Nature, vol. 428(6983), pages 643-646, April.
    14. Jelena Grujić & Constanza Fosco & Lourdes Araujo & José A Cuesta & Angel Sánchez, 2010. "Social Experiments in the Mesoscale: Humans Playing a Spatial Prisoner's Dilemma," PLOS ONE, Public Library of Science, vol. 5(11), pages 1-9, November.
    15. David Melamed & Ashley Harrell & Brent Simpson, 2018. "Cooperation, clustering, and assortative mixing in dynamic networks," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 115(5), pages 951-956, January.
    16. repec:cup:judgdm:v:13:y:2018:i:1:p:99-111 is not listed on IDEAS
    17. F. Débarre & C. Hauert & M. Doebeli, 2014. "Social evolution in structured populations," Nature Communications, Nature, vol. 5(1), pages 1-7, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Faqi & Fu, Feng, 2013. "Quantifying the impact of noise on macroscopic organization of cooperation in spatial games," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 35-44.
    2. Swami Iyer & Timothy Killingback, 2020. "Evolution of Cooperation in Social Dilemmas with Assortative Interactions," Games, MDPI, vol. 11(4), pages 1-31, September.
    3. Jiang, Zhi-Qiang & Wang, Peng & Ma, Jun-Chao & Zhu, Peican & Han, Zhen & Podobnik, Boris & Stanley, H. Eugene & Zhou, Wei-Xing & Alfaro-Bittner, Karin & Boccaletti, Stefano, 2023. "Unraveling the effects of network, direct and indirect reciprocity in online societies," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    4. Faqi Du & Feng Fu, 2011. "Partner Selection Shapes the Strategic and Topological Evolution of Cooperation," Dynamic Games and Applications, Springer, vol. 1(3), pages 354-369, September.
    5. Benjamin Allen & Christine Sample & Robert Jencks & James Withers & Patricia Steinhagen & Lori Brizuela & Joshua Kolodny & Darren Parke & Gabor Lippner & Yulia A Dementieva, 2020. "Transient amplifiers of selection and reducers of fixation for death-Birth updating on graphs," PLOS Computational Biology, Public Library of Science, vol. 16(1), pages 1-20, January.
    6. Sarkar, Bijan, 2021. "The cooperation–defection evolution on social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    7. Wang, Lu & Ye, Shun-Qiang & Cheong, Kang Hao & Bao, Wei & Xie, Neng-gang, 2018. "The role of emotions in spatial prisoner’s dilemma game with voluntary participation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1396-1407.
    8. Qi Su & Lei Zhou & Long Wang, 2019. "Evolutionary multiplayer games on graphs with edge diversity," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-22, April.
    9. Josef Tkadlec & Andreas Pavlogiannis & Krishnendu Chatterjee & Martin A Nowak, 2020. "Limits on amplifiers of natural selection under death-Birth updating," PLOS Computational Biology, Public Library of Science, vol. 16(1), pages 1-13, January.
    10. Lu, Kun & Wu, Bin & Li, Ming-chu & Wang, Zhen, 2014. "Other-regarding preference causing ping-pong effect in self-questioning game," Chaos, Solitons & Fractals, Elsevier, vol. 59(C), pages 51-58.
    11. Ma, Xiaojian & Quan, Ji & Wang, Xianjia, 2023. "Evolution of cooperation with nonlinear environment feedback in repeated public goods game," Applied Mathematics and Computation, Elsevier, vol. 452(C).
    12. Swami Iyer & Timothy Killingback, 2016. "Evolution of Cooperation in Social Dilemmas on Complex Networks," PLOS Computational Biology, Public Library of Science, vol. 12(2), pages 1-25, February.
    13. Christian Hilbe & Maria Kleshnina & Kateřina Staňková, 2023. "Evolutionary Games and Applications: Fifty Years of ‘The Logic of Animal Conflict’," Dynamic Games and Applications, Springer, vol. 13(4), pages 1035-1048, December.
    14. Li, Ya & Chen, Shanxiong & Niu, Ben, 2018. "Reward depending on public funds stimulates cooperation in spatial prisoner’s dilemma games," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 38-45.
    15. Te Wu & Long Wang & Feng Fu, 2017. "Coevolutionary dynamics of phenotypic diversity and contingent cooperation," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-16, January.
    16. Wang, Xiaofeng & Chen, Xiaojie & Gao, Jia & Wang, Long, 2013. "Reputation-based mutual selection rule promotes cooperation in spatial threshold public goods games," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 181-187.
    17. Lv, Shaojie & Wang, Xianjia, 2020. "The impact of heterogeneous investments on the evolution of cooperation in public goods game with exclusion," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    18. Yu, Fengyuan & Wang, Jianwei & Chen, Wei & He, Jialu, 2023. "Increased cooperation potential and risk under suppressed strategy differentiation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 621(C).
    19. Jin, Jiahua & Shen, Chen & Chu, Chen & Shi, Lei, 2017. "Incorporating dominant environment into individual fitness promotes cooperation in the spatial prisoners' dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 96(C), pages 70-75.
    20. Wang, Zhen & Chen, Tong & Wang, Yongjie, 2017. "Leadership by example promotes the emergence of cooperation in public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 101(C), pages 100-105.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jgames:v:11:y:2020:i:1:p:16-:d:333258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.