IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/119352.html
   My bibliography  Save this paper

Testing for the Markov property in time series via deep conditional generative learning

Author

Listed:
  • Zhou, Yunzhe
  • Shi, Chengchun
  • Li, Lexin
  • Yao, Qiwei

Abstract

The Markov property is widely imposed in analysis of time series data. Correspondingly, testing the Markov property, and relatedly, inferring the order of a Markov model, are of paramount importance. In this article, we propose a nonparametric test for the Markov property in high-dimensional time series via deep conditional generative learning. We also apply the test sequentially to determine the order of the Markov model. We show that the test controls the type-I error asymptotically, and has the power approaching one. Our proposal makes novel contributions in several ways. We utilise and extend state-of-the-art deep generative learning to estimate the conditional density functions, and establish a sharp upper bound on the approximation error of the estimators. We derive a doubly robust test statistic, which employs a nonparametric estimation but achieves a parametric convergence rate. We further adopt sample splitting and cross-fitting to minimise the conditions required to ensure the consistency of the test. We demonstrate the efficacy of the test through both simulations and the three data applications.

Suggested Citation

  • Zhou, Yunzhe & Shi, Chengchun & Li, Lexin & Yao, Qiwei, 2023. "Testing for the Markov property in time series via deep conditional generative learning," LSE Research Online Documents on Economics 119352, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:119352
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/119352/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. James Taylor & Jochen Einbeck, 2013. "Challenging the curse of dimensionality in multivariate local linear regression," Computational Statistics, Springer, vol. 28(3), pages 955-976, June.
    2. Yao, Qiwei & Tong, Howell, 1994. "On subset selection in non-parametric stochastic regression," LSE Research Online Documents on Economics 6409, London School of Economics and Political Science, LSE Library.
    3. Max H. Farrell & Tengyuan Liang & Sanjog Misra, 2021. "Deep Neural Networks for Estimation and Inference," Econometrica, Econometric Society, vol. 89(1), pages 181-213, January.
    4. Jonas Rothfuss & Fabio Ferreira & Simon Walther & Maxim Ulrich, 2019. "Conditional Density Estimation with Neural Networks: Best Practices and Benchmarks," Papers 1903.00954, arXiv.org, revised Apr 2019.
    5. Rolf Tschernig & Lijian Yang, 2000. "Nonparametric Lag Selection for Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(4), pages 457-487, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rolf Tschernig & Lijian Yang, 2000. "Nonparametric Estimation of Generalized Impulse Response Functions," Econometric Society World Congress 2000 Contributed Papers 1417, Econometric Society.
    2. Lütkepohl,Helmut & Krätzig,Markus (ed.), 2004. "Applied Time Series Econometrics," Cambridge Books, Cambridge University Press, number 9780521547871.
    3. Rech, Gianluigi & Teräsvirta, Timo & Tschernig, Rolf, 1999. "A simple variable selection technique for nonlinear models," SFB 373 Discussion Papers 1999,26, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    4. Timo Teräsvirta & Marcelo C. Medeiros & Gianluigi Rech, 2006. "Building neural network models for time series: a statistical approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(1), pages 49-75.
    5. Jelena Bradic & Weijie Ji & Yuqian Zhang, 2021. "High-dimensional Inference for Dynamic Treatment Effects," Papers 2110.04924, arXiv.org, revised May 2023.
    6. Manuel Arellano & Stéphane Bonhomme & Micole De Vera & Laura Hospido & Siqi Wei, 2022. "Income risk inequality: Evidence from Spanish administrative records," Quantitative Economics, Econometric Society, vol. 13(4), pages 1747-1801, November.
    7. Inés Barbeito & Ricardo Cao & Stefan Sperlich, 2023. "Bandwidth selection for statistical matching and prediction," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 418-446, March.
    8. Combes, Pierre-Philippe & Gobillon, Laurent & Zylberberg, Yanos, 2022. "Urban economics in a historical perspective: Recovering data with machine learning," Regional Science and Urban Economics, Elsevier, vol. 94(C).
    9. Victor Chernozhukov & Whitney K. Newey & Victor Quintas-Martinez & Vasilis Syrgkanis, 2021. "Automatic Debiased Machine Learning via Riesz Regression," Papers 2104.14737, arXiv.org, revised Mar 2024.
    10. Sami MESTIRI, 2022. "Modeling the volatility of Bitcoin returns using Nonparametric GARCH models," Journal of Academic Finance, RED research unit, university of Gabes, Tunisia, vol. 13(1), pages 2-16, June.
    11. Cizek, P. & Hardle, W., 2006. "Robust estimation of dimension reduction space," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 545-555, November.
    12. Guo, Zheng-Feng & Shintani, Mototsugu, 2011. "Nonparametric lag selection for nonlinear additive autoregressive models," Economics Letters, Elsevier, vol. 111(2), pages 131-134, May.
    13. Donovan Platt, 2022. "Bayesian Estimation of Economic Simulation Models Using Neural Networks," Computational Economics, Springer;Society for Computational Economics, vol. 59(2), pages 599-650, February.
    14. Cai, Zongwu, 2003. "Trending Time-Varying Coefficient Models With Serially Correlated Errors," SFB 373 Discussion Papers 2003,7, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    15. Semenova, Vira, 2023. "Debiased machine learning of set-identified linear models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1725-1746.
    16. Philippe Goulet Coulombe & Mikael Frenette & Karin Klieber, 2023. "From Reactive to Proactive Volatility Modeling with Hemisphere Neural Networks," Working Papers 23-04, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Nov 2023.
    17. Ziwei Mei & Zhentao Shi & Peter C. B. Phillips, 2022. "The boosted HP filter is more general than you might think," Cowles Foundation Discussion Papers 2348, Cowles Foundation for Research in Economics, Yale University.
    18. Lijian Yang & Wolfgang Hardle & Jens Nielsen, 1999. "Nonparametric Autoregression with Multiplicative Volatility and Additive mean," Journal of Time Series Analysis, Wiley Blackwell, vol. 20(5), pages 579-604, September.
    19. Marina Dorokhova & Fernando Ribeiro & António Barbosa & João Viana & Filipe Soares & Nicolas Wyrsch, 2021. "Real-World Implementation of an ICT-Based Platform to Promote Energy Efficiency," Energies, MDPI, vol. 14(9), pages 1-23, April.
    20. Daniel Jacob, 2021. "CATE meets ML -- The Conditional Average Treatment Effect and Machine Learning," Papers 2104.09935, arXiv.org, revised Apr 2021.

    More about this item

    Keywords

    deep conditional generative learning; high-dimensional time series; hypothesis testing; Markov property; mixture density network; OUP deal;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:119352. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.