IDEAS home Printed from https://ideas.repec.org/p/dar/wpaper/119280.html
   My bibliography  Save this paper

I Spot, I Adopt! Peer Effects and Visibility in Solar Photovoltaic System Adoption of Households

Author

Listed:
  • Rode, Johannes
  • Müller, Sven

Abstract

We study variation of peer effects in rooftop photovoltaic adoption by households. Our investigation employs geocoded data on all potential adopters and on all grid-connected photovoltaic systems set up in Germany through 2010. We construct an individual measure of peer effects for each potential adopter. For identification, we exploit exogenous variation in two dimensions of photovoltaic system roof appropriateness of neighbors: their inclination and their orientation. Using discrete choice models with panel data, we find evidence for causal peer effects. However, the impact of one previously installed PV system on current adoption decreases over time. We also show that visible PV systems cause an increase in the odds of installing which is up to three times higher in comparison to all PV systems. At rural locations visibility may be less important, which indicates that word-of-mouth communication plays a stronger role.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Rode, Johannes & Müller, Sven, 2020. "I Spot, I Adopt! Peer Effects and Visibility in Solar Photovoltaic System Adoption of Households," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 119280, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
  • Handle: RePEc:dar:wpaper:119280
    Note: for complete metadata visit http://tubiblio.ulb.tu-darmstadt.de/119280/
    as

    Download full text from publisher

    File URL: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3469548
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Laura-Lucia Richter, 2013. "Social Effects in the Diffusion of Solar Photovoltaic Technology in the UK," Working Papers EPRG 1332, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    2. Stephen J. Redding & Daniel M. Sturm, 2008. "The Costs of Remoteness: Evidence from German Division and Reunification," American Economic Review, American Economic Association, vol. 98(5), pages 1766-1797, December.
    3. Comin, Diego & Rode, Johannes, 2013. "From Green Users to Green Voters," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 63678, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    4. Gautam Gowrisankaran & Joanna Stavins, 2004. "Network Externalities and Technology Adoption: Lessons from Electronic Payments," RAND Journal of Economics, The RAND Corporation, vol. 35(2), pages 260-276, Summer.
    5. Laura-Lucia Richter, 2013. "Social Effects in the Diffusion of solar Photovoltaic Technology in the UK," Cambridge Working Papers in Economics 1357, Faculty of Economics, University of Cambridge.
    6. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555.
    7. Seel, Joachim & Barbose, Galen L. & Wiser, Ryan H., 2014. "An analysis of residential PV system price differences between the United States and Germany," Energy Policy, Elsevier, vol. 69(C), pages 216-226.
    8. Rode, Johannes & Weber, Alexander, 2016. "Does localized imitation drive technology adoption? A case study on rooftop photovoltaic systems in Germany," Journal of Environmental Economics and Management, Elsevier, vol. 78(C), pages 38-48.
    9. Prins, R. & Verhoef, P.C., 2007. "Marketing Communication Drivers of Adoption Timing of a New E-Service among Existing Customers," ERIM Report Series Research in Management ERS-2007-018-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    10. Rode, Johannes, 2014. "Renewable Energy Adoption in Germany - Drivers, Barriers and Implications," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 65829, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    11. Hinz, Oliver & Skiera, Bernd & Barrot, Christian & Becker, Jan, 2011. "Seeding Strategies for Viral Marketing: An Empirical Comparison," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 56543, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    12. Agnolucci, Paolo, 2006. "Use of economic instruments in the German renewable electricity policy," Energy Policy, Elsevier, vol. 34(18), pages 3538-3548, December.
    13. Paulo Albuquerque & Bart J. Bronnenberg & Charles J. Corbett, 2007. "A Spatiotemporal Analysis of the Global Diffusion of ISO 9000 and ISO 14000 Certification," Management Science, INFORMS, vol. 53(3), pages 451-468, March.
    14. Rode, Johannes & Weber, Alexander, 2016. "Does localized imitation drive technology adoption? A case study on rooftop photovoltaic systems in Germany," Journal of Environmental Economics and Management, Elsevier, vol. 78(C), pages 38-48.
    15. Maxime C. Cohen & Ruben Lobel & Georgia Perakis, 2016. "The Impact of Demand Uncertainty on Consumer Subsidies for Green Technology Adoption," Management Science, INFORMS, vol. 62(5), pages 1235-1258, May.
    16. Noll, Daniel & Dawes, Colleen & Rai, Varun, 2014. "Solar Community Organizations and active peer effects in the adoption of residential PV," Energy Policy, Elsevier, vol. 67(C), pages 330-343.
    17. Ulrich Dewald & Bernhard Truffer, 2011. "Market Formation in Technological Innovation Systems—Diffusion of Photovoltaic Applications in Germany," Industry and Innovation, Taylor & Francis Journals, vol. 18(3), pages 285-300.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabian Scheller & Isabel Doser & Daniel Sloot & Russell McKenna & Thomas Bruckner, 2020. "Exploring the Role of Stakeholder Dynamics in Residential Photovoltaic Adoption Decisions: A Synthesis of the Literature," Energies, MDPI, vol. 13(23), pages 1-31, November.
    2. Zaman, Rafia & Das, Debasish Kumar & van Vliet, Oscar & Posch, Alfred, 2021. "Distributional inequality in market-based solar home system programs: Evidence from rural Bangladesh," Energy Economics, Elsevier, vol. 103(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rode, Johannes & Müller, Sven, 2016. "Spatio-Temporal Variation in Peer Effects - The Case of Rooftop Photovoltaic Systems in Germany," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 84765, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    2. Neij, Lena & Heiskanen, Eva & Strupeit, Lars, 2017. "The deployment of new energy technologies and the need for local learning," Energy Policy, Elsevier, vol. 101(C), pages 274-283.
    3. Balta-Ozkan, Nazmiye & Yildirim, Julide & Connor, Peter M. & Truckell, Ian & Hart, Phil, 2021. "Energy transition at local level: Analyzing the role of peer effects and socio-economic factors on UK solar photovoltaic deployment," Energy Policy, Elsevier, vol. 148(PB).
    4. Fabian Scheller & Isabel Doser & Daniel Sloot & Russell McKenna & Thomas Bruckner, 2020. "Exploring the Role of Stakeholder Dynamics in Residential Photovoltaic Adoption Decisions: A Synthesis of the Literature," Energies, MDPI, vol. 13(23), pages 1-31, November.
    5. Comin, Diego & Rode, Johannes, 2013. "From Green Users to Green Voters," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 63678, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    6. Jan Paul Baginski & Christoph Weber, "undated". "Coherent estimations for residential photovoltaic uptake in Germany including spatial spillover effects," EWL Working Papers 1902, University of Duisburg-Essen, Chair for Management Science and Energy Economics.
    7. Moon-Hyun Kim & Tae-Hyoung Tommy Gim, 2021. "Spatial Characteristics of the Diffusion of Residential Solar Photovoltaics in Urban Areas: A Case of Seoul, South Korea," IJERPH, MDPI, vol. 18(2), pages 1-16, January.
    8. Carattini, Stefano & Gillingham, Kenneth T. & Meng, Xiangyu & Yoeli, Erez, 2022. "Peer-to-peer solar and social rewards: evidence from a field experiment," LSE Research Online Documents on Economics 117361, London School of Economics and Political Science, LSE Library.
    9. Curtius, Hans Christoph & Hille, Stefanie Lena & Berger, Christian & Hahnel, Ulf Joachim Jonas & Wüstenhagen, Rolf, 2018. "Shotgun or snowball approach? Accelerating the diffusion of rooftop solar photovoltaics through peer effects and social norms," Energy Policy, Elsevier, vol. 118(C), pages 596-602.
    10. Shandelle Steadman & Anna Rita Bennato & Monica Giulietti, 2023. "From energy consumers to prosumers: the role of peer effects in the diffusion of residential microgeneration technology," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 50(2), pages 321-346, June.
    11. Irwin, Nicholas B., 2021. "Sunny days: Spatial spillovers in photovoltaic system adoptions," Energy Policy, Elsevier, vol. 151(C).
    12. Klein, Martin & Deissenroth, Marc, 2017. "When do households invest in solar photovoltaics? An application of prospect theory," Energy Policy, Elsevier, vol. 109(C), pages 270-278.
    13. repec:hal:spmain:info:hdl:2441/6d7es28iae9pjoil7092hs41h3 is not listed on IDEAS
    14. Stefan Lamp, 2023. "Sunspots That Matter: The Effect of Weather on Solar Technology Adoption," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(4), pages 1179-1219, April.
    15. Woo, JongRoul & Moon, Sungho & Choi, Hyunhong, 2022. "Economic value and acceptability of advanced solar power systems for multi-unit residential buildings: The case of South Korea," Applied Energy, Elsevier, vol. 324(C).
    16. Lan, Haifeng & Gou, Zhonghua & Lu, Yi, 2021. "Machine learning approach to understand regional disparity of residential solar adoption in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    17. Francesco Vona, 2019. "Job losses and political acceptability of climate policies: why the ‘job-killing’ argument is so persistent and how to overturn it," Climate Policy, Taylor & Francis Journals, vol. 19(4), pages 524-532, April.
    18. Fabian Scheller & Isabel Doser & Emily Schulte & Simon Johanning & Russell McKenna & Thomas Bruckner, 2021. "Stakeholder dynamics in residential solar energy adoption: findings from focus group discussions in Germany," Papers 2104.14240, arXiv.org.
    19. Jianhua Zhang & Xiaolong Liu & Dimitris Ballas, 2023. "Spatial and relational peer effects on environmental behavioral imitation," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 25(4), pages 575-599, October.
    20. Kriechbaum, Michael & López Prol, Javier & Posch, Alfred, 2018. "Looking back at the future: Dynamics of collective expectations about photovoltaic technology in Germany & Spain," Technological Forecasting and Social Change, Elsevier, vol. 129(C), pages 76-87.
    21. Francesco Vona, 2018. "Job losses and the political acceptability of climate policies : an amplified collective action problem," Post-Print hal-03458275, HAL.

    More about this item

    JEL classification:

    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • C35 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation
    • R10 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dar:wpaper:119280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dekanatssekretariat (email available below). General contact details of provider: https://edirc.repec.org/data/ivthdde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.