IDEAS home Printed from https://ideas.repec.org/p/cdl/itsrrp/qt90g1m5d4.html
   My bibliography  Save this paper

Freeway Performance Measurement System (PeMS), Version 3 Phase II

Author

Listed:
  • Varaiya, Pravin

Abstract

This continuing PeMS project had four tasks: 1. Quantify the reduction in delay from optimum freeway operations; 2. Release travel time estimates to the public; 3. Training Caltrans staff in the use of PeMS; 4. Improve system robustness/maintenance. For task 1, we developed and implemented an algorithm that quantifes potential travel time reduction. The algorithm takes historical travel demand data from PeMS. It simulates the resulting traffic flow, based on an idealized ramp-metering algorithm, and calculates the resulting travel times on the freeway and waiting time at the ramps. As an example, the algorithm estimates that the annual congestion delay of 75 million vehiclehours in Los Angeles, District 7, could be reduced to 25 million vehicle-hours. For task 2, we developed an algorithm for travel time predictions for Los Angeles, and made it available on the PeMS website. Users could select any two points on the freeway network, and state a departure (or desired arrival) time. The algorithm finds the 15 shortest alternative travel routes and estimates a travel time for each. The user could select any of these routes. For task 3, we assisted Booz Allen & Hamilton in the preparation and presentation of PeMS training material. One training session was held in District 7. The feedback received from the participants was incorporated in PeMS v. 4. Berkeley Transportation Systems accomplished task 4 under a subcontract to U.C. Berkeley. The result was a clearly defined maintenance procedure and a very stable system.

Suggested Citation

  • Varaiya, Pravin, 2004. "Freeway Performance Measurement System (PeMS), Version 3 Phase II," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt90g1m5d4, Institute of Transportation Studies, UC Berkeley.
  • Handle: RePEc:cdl:itsrrp:qt90g1m5d4
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/90g1m5d4.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cassidy, Michael J. & Bertini, Robert L., 1999. "Some traffic features at freeway bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 33(1), pages 25-42, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin Cao & Monica Menendez & Rashid Waraich, 2019. "Impacts of the urban parking system on cruising traffic and policy development: the case of Zurich downtown area, Switzerland," Transportation, Springer, vol. 46(3), pages 883-908, June.
    2. Zhang, Lei & Levinson, David, 2010. "Ramp metering and freeway bottleneck capacity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(4), pages 218-235, May.
    3. Banks, James H., 2003. "Average time gaps in congested freeway flow," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(6), pages 539-554, July.
    4. Daganzo, Carlos F., 2011. "On the macroscopic stability of freeway traffic," Transportation Research Part B: Methodological, Elsevier, vol. 45(5), pages 782-788, June.
    5. Wang, Tao & Liao, Peng & Tang, Tie-Qiao & Huang, Hai-Jun, 2022. "Deterministic capacity drop and morning commute in traffic corridor with tandem bottlenecks: A new manifestation of capacity expansion paradox," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    6. Guardiola, I.G. & Leon, T. & Mallor, F., 2014. "A functional approach to monitor and recognize patterns of daily traffic profiles," Transportation Research Part B: Methodological, Elsevier, vol. 65(C), pages 119-136.
    7. Cassidy, Michael J. & Jang, Kitae & Daganzo, Carlos F., 2010. "The smoothing effect of carpool lanes on freeway bottlenecks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(2), pages 65-75, February.
    8. Ngoduy, D. & Liu, R., 2007. "Multiclass first-order simulation model to explain non-linear traffic phenomena," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 667-682.
    9. Zhou, Fang & Li, Xiaopeng & Ma, Jiaqi, 2017. "Parsimonious shooting heuristic for trajectory design of connected automated traffic part I: Theoretical analysis with generalized time geography," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 394-420.
    10. Sun, Qipeng & Cheng, Qianqian & Wang, Yongjie & Li, Tao & Ma, Fei & Yao, Zhigang, 2022. "Zip-merging behavior at Y-intersection based on intelligent travel points," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    11. Laval, Jorge A., 2011. "Hysteresis in traffic flow revisited: An improved measurement method," Transportation Research Part B: Methodological, Elsevier, vol. 45(2), pages 385-391, February.
    12. Mauch, Michael, 2002. "Analyses of Start-Stop Waves in Congested Freeway Traffic," University of California Transportation Center, Working Papers qt9kb9x6n5, University of California Transportation Center.
    13. Cassidy, Michael J. & Ahn, Soyoung, 2004. "Driver Turn-Taking Behavior in Congested Freeway Merges," University of California Transportation Center, Working Papers qt06j9k7h2, University of California Transportation Center.
    14. Nima Dadashzadeh & Murat Ergun, 2019. "An Integrated Variable Speed Limit and ALINEA Ramp Metering Model in the Presence of High Bus Volume," Sustainability, MDPI, vol. 11(22), pages 1-26, November.
    15. Jin, Wen-Long & Gan, Qi-Jian & Lebacque, Jean-Patrick, 2015. "A kinematic wave theory of capacity drop," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 316-329.
    16. Yan, Qinglong & Sun, Zhe & Gan, Qijian & Jin, Wen-Long, 2018. "Automatic identification of near-stationary traffic states based on the PELT changepoint detection," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 39-54.
    17. Tanzina Afrin & Nita Yodo, 2020. "A Survey of Road Traffic Congestion Measures towards a Sustainable and Resilient Transportation System," Sustainability, MDPI, vol. 12(11), pages 1-23, June.
    18. Rudjanakanoknad, Jittichai, 2005. "Increasing Freeway Merge Capacity Through On-Ramp Metering," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3js9x18d, Institute of Transportation Studies, UC Berkeley.
    19. Arnott, Richard, 2013. "A bathtub model of downtown traffic congestion," Journal of Urban Economics, Elsevier, vol. 76(C), pages 110-121.
    20. Martínez, Irene & Jin, Wen-Long, 2020. "Optimal location problem for variable speed limit application areas," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 221-246.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsrrp:qt90g1m5d4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.