IDEAS home Printed from https://ideas.repec.org/p/cdl/itsdav/qt9zg6g60t.html
   My bibliography  Save this paper

Plug-in Hybrid Vehicle GHG Impacts in California: Integrating Consumer-Informed Recharge Profiles with an Electricity-Dispatch Model

Author

Listed:
  • Axsen, John
  • Kurani, Kenneth S.
  • McCarthy, Ryan
  • Yang, Christopher

Abstract

Estimating greenhouse gas (GHG) emissions of plug-in hybrid vehicles (PHEVs) is challenging because PHEVs are powered by gasoline and grid electricity—in a variety of proportions across individual consumers. Previous GHG estimates emissions postulate consumer behavior and simplify interactions with the electricity grid. We construct PHEV emissions scenarios to address inherent relationships between vehicle design, driving and recharging behaviors, seasonal and time-of-day variation in GHG-intensity of electricity, and total GHG emissions. From a survey of 877 California new vehicle buyers we elicit driving patterns, time of day recharge access, and PHEV design interests. The elicited data differ substantially from those used in previous analyses—including substantial interest in PHEVs with no true all-electric driving. We construct electricity demand profiles scaled to one million PHEVs and input them into an hourly California electricity supply model to simulate GHG emissions scenarios. Compared to conventional vehicles, consumerdesigned PHEVs cut marginal (incremental) GHG emissions by more than one third in current California energy scenarios and by a quarter in future energy scenarios— -2- reductions similar to those simulated for all-electric PHEV designs. Across the emissions scenarios realization of long-term GHG reductions depends on reducing the carbon intensity of the grid.

Suggested Citation

  • Axsen, John & Kurani, Kenneth S. & McCarthy, Ryan & Yang, Christopher, 2010. "Plug-in Hybrid Vehicle GHG Impacts in California: Integrating Consumer-Informed Recharge Profiles with an Electricity-Dispatch Model," Institute of Transportation Studies, Working Paper Series qt9zg6g60t, Institute of Transportation Studies, UC Davis.
  • Handle: RePEc:cdl:itsdav:qt9zg6g60t
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/9zg6g60t.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sperling, Daniel & Farrell, Alexander, 2007. "A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis," Institute of Transportation Studies, Working Paper Series qt5hv693r2, Institute of Transportation Studies, UC Davis.
    2. Farrell, Alexander E. & Sperling, Dan, 2007. "A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis," Institute of Transportation Studies, Working Paper Series qt8ng2h3x7, Institute of Transportation Studies, UC Davis.
    3. Axsen, Jonn & Burke, Andy & Kurani, Kenneth S, 2010. "Are Batteries Ready for Plug-in Hybrid Buyers?," Institute of Transportation Studies, Working Paper Series qt7vh184rw, Institute of Transportation Studies, UC Davis.
    4. Farrell, Alexander E. & Sperling, Daniel & Brandt, A.R. & Eggert, A. & Farrell, A.E. & Haya, B.K. & Hughes, J. & Jenkins, B.M. & Jones, A.D. & Kammen, D.M. & Knittel, C.R. & Melaina, M.W. & O'Hare, M., 2007. "A Low-Carbon Fuel Standard for California Part 2: Policy Analysis," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt1hm6k089, Institute of Transportation Studies, UC Berkeley.
    5. Farrell, Alexander & Sperling, Daniel, 2007. "A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis," Institute of Transportation Studies, Working Paper Series qt8xv635dc, Institute of Transportation Studies, UC Davis.
    6. Axsen, Jonn & Kurani, Kenneth S, 2010. "Anticipating plug-in hybrid vehicle energy impacts in California: Constructing consumer-informed recharge profiles," Institute of Transportation Studies, Working Paper Series qt3h69n0cs, Institute of Transportation Studies, UC Davis.
    7. Axsen, Jonn & Kurani, Kenneth S. & Burke, Andrew, 2010. "Are batteries ready for plug-in hybrid buyers?," Transport Policy, Elsevier, vol. 17(3), pages 173-182, May.
    8. Axsen, Jonn & Burke, Andy & Kurani, Kenneth S, 2008. "Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008," Institute of Transportation Studies, Working Paper Series qt1bp83874, Institute of Transportation Studies, UC Davis.
    9. McCarthy, Ryan W., 2009. "Assessing Vehicle Electricity Demand Impacts on California Electricity Supply," Institute of Transportation Studies, Working Paper Series qt5nn517r4, Institute of Transportation Studies, UC Davis.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brett Williams & Elliot Martin & Timothy Lipman & Daniel Kammen, 2011. "Plug-in-Hybrid Vehicle Use, Energy Consumption, and Greenhouse Emissions: An Analysis of Household Vehicle Placements in Northern California," Energies, MDPI, vol. 4(3), pages 1-23, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Axsen, Jonn & Kurani, Kenneth S. & McCarthy, Ryan & Yang, Christopher, 2011. "Plug-in hybrid vehicle GHG impacts in California: Integrating consumer-informed recharge profiles with an electricity-dispatch model," Energy Policy, Elsevier, vol. 39(3), pages 1617-1629, March.
    2. Huseynov, Samir & Palma, Marco A., 2018. "Does California’s LCFS Reduce CO2 Emissions?," 2018 Annual Meeting, August 5-7, Washington, D.C. 274200, Agricultural and Applied Economics Association.
    3. Wang, Banban & Pizer, William A. & Munnings, Clayton, 2022. "Price limits in a tradable performance standard," Journal of Environmental Economics and Management, Elsevier, vol. 116(C).
    4. Tittmann, P.W. & Parker, N.C. & Hart, Q.J. & Jenkins, B.M., 2010. "A spatially explicit techno-economic model of bioenergy and biofuels production in California," Journal of Transport Geography, Elsevier, vol. 18(6), pages 715-728.
    5. Yongxi (Eric) Huang & Yueyue Fan & Chien-Wei Chen, 2014. "An Integrated Biofuel Supply Chain to Cope with Feedstock Seasonality and Uncertainty," Transportation Science, INFORMS, vol. 48(4), pages 540-554, November.
    6. Azadeh Maroufmashat & Michael Fowler, 2017. "Transition of Future Energy System Infrastructure; through Power-to-Gas Pathways," Energies, MDPI, vol. 10(8), pages 1-22, July.
    7. Axsen, Jonn & Wolinetz, Michael, 2023. "What does a low-carbon fuel standard contribute to a policy mix? An interdisciplinary review of evidence and research gaps," Transport Policy, Elsevier, vol. 133(C), pages 54-63.
    8. Fan, Yueyue & Huang, Yongxi & Chen, Chien-Wei, 2012. "Multistage Infrastructure System Design: An Integrated Biofuel Supply Chain against Feedstock Seasonality and Uncertainty," Institute of Transportation Studies, Working Paper Series qt9g8413m5, Institute of Transportation Studies, UC Davis.
    9. Fischer, Carolyn & Salant, Stephen W., 2017. "Balancing the carbon budget for oil: The distributive effects of alternative policies," European Economic Review, Elsevier, vol. 99(C), pages 191-215.
    10. Rubin, Jonathan & Leiby, Paul N., 2013. "Tradable credits system design and cost savings for a national low carbon fuel standard for road transport," Energy Policy, Elsevier, vol. 56(C), pages 16-28.
    11. Gang Tian & Jian Shi & Licheng Sun & Xingle Long & Benhai Guo, 2017. "Dynamic changes in the energy–carbon performance of Chinese transportation sector: a meta-frontier non-radial directional distance function approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(2), pages 585-607, November.
    12. Stepp, Matthew D. & Winebrake, James J. & Hawker, J. Scott & Skerlos, Steven J., 2009. "Greenhouse gas mitigation policies and the transportation sector: The role of feedback effects on policy effectiveness," Energy Policy, Elsevier, vol. 37(7), pages 2774-2787, July.
    13. Derek Lemoine, 2017. "Escape from Third-Best: Rating Emissions for Intensity Standards," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 789-821, August.
    14. Yeh, Sonia & Sperling, Daniel, 2010. "Low carbon fuel standards: Implementation scenarios and challenges," Energy Policy, Elsevier, vol. 38(11), pages 6955-6965, November.
    15. Meredith Fowlie & Christopher R. Knittel & Catherine Wolfram, 2008. "Sacred Cars? Optimal Regulation of Stationary and Non-stationary Pollution Sources," NBER Working Papers 14504, National Bureau of Economic Research, Inc.
    16. Kammen, Daniel M. & Farrell, Alexander E & Plevin, Richard J & Jones, Andrew & Nemet, Gregory F & Delucchi, Mark, 2008. "Energy and Greenhouse Gas Impacts of Biofuels: A Framework for Analysis," Institute of Transportation Studies, Working Paper Series qt5qw5g6q2, Institute of Transportation Studies, UC Davis.
    17. Rhodes, Ekaterina & Axsen, Jonn & Jaccard, Mark, 2015. "Gauging citizen support for a low carbon fuel standard," Energy Policy, Elsevier, vol. 79(C), pages 104-114.
    18. Dallas Burtraw, 2008. "Regulating CO 2 in electricity markets: sources or consumers?," Climate Policy, Taylor & Francis Journals, vol. 8(6), pages 588-606, November.
    19. Yeh, Sonia & Witcover, Julie & Lade, Gabriel E. & Sperling, Daniel, 2016. "A review of low carbon fuel policies: Principles, program status and future directions," Energy Policy, Elsevier, vol. 97(C), pages 220-234.
    20. Holland, Stephen P., 2012. "Emissions taxes versus intensity standards: Second-best environmental policies with incomplete regulation," Journal of Environmental Economics and Management, Elsevier, vol. 63(3), pages 375-387.

    More about this item

    Keywords

    Engineering;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt9zg6g60t. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.