Advanced Search
MyIDEAS: Login to save this paper or follow this series

Stylized Facts and Discrete Stochastic Volatility Models

Contents:

Author Info

  • Alin Sima
Registered author(s):

    Abstract

    This paper highlights the ability of the discrete stochastic volatility models to predict some important properties of the data, i.e. leptokurtic distribution of the returns, slowly decaying autocorrelation function of squared returns, the Taylor effect and the asymmetric response of volatility to return shocks. Although, there are many methods proposed for stochastic volatility model estimation, in this paper Markov Chain Monte Carlo techniques were considered. It was found that the existent specifications in the stochastic volatility literature are consistent with the empirical properties of the data. Thus, from this point of view the discrete stochastic volatility models are reliable tools for volatility estimation.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.dofin.ase.ro/Working%20papers/Sima%20Alin/alin.sima.dissertation.pdf
    File Function: First version, 2008
    Download Restriction: no

    Bibliographic Info

    Paper provided by Bucharest University of Economics, Center for Advanced Research in Finance and Banking - CARFIB in its series Advances in Economic and Financial Research - DOFIN Working Paper Series with number 10.

    as in new window
    Length:
    Date of creation: Jun 2008
    Date of revision:
    Handle: RePEc:cab:wpaefr:10

    Contact details of provider:
    Postal: 6 ROMANA PLACE, 70167 - BUCHAREST
    Phone: 0040-01-2112650
    Fax: 0040-01-3129549
    Email:
    Web page: http://www.dofin.ase.ro/carfib/
    More information through EDIRC

    Related research

    Keywords: discrete stochastic volatility models;

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Sandmann, Gleb & Koopman, Siem Jan, 1998. "Estimation of stochastic volatility models via Monte Carlo maximum likelihood," Journal of Econometrics, Elsevier, vol. 87(2), pages 271-301, September.
    2. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility: A Review," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 145-175.
    3. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. " On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    4. He, Changli & Teräsvirta, Timo, 1997. "Properties of Moments of a Family of GARCH Processes," Working Paper Series in Economics and Finance 198, Stockholm School of Economics.
    5. Andersen, Torben G. & Chung, Hyung-Jin & Sorensen, Bent E., 1999. "Efficient method of moments estimation of a stochastic volatility model: A Monte Carlo study," Journal of Econometrics, Elsevier, vol. 91(1), pages 61-87, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:cab:wpaefr:10. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ciprian Necula) The email address of this maintainer does not seem to be valid anymore. Please ask Ciprian Necula to update the entry or send us the correct address.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.