IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2404.01451.html
   My bibliography  Save this paper

Non-stationary Financial Risk Factors and Macroeconomic Vulnerability for the UK

Author

Listed:
  • Katalin Varga
  • Tibor Szendrei

Abstract

Tracking the build-up of financial vulnerabilities is a key component of financial stability policy. Due to the complexity of the financial system, this task is daunting, and there have been several proposals on how to manage this goal. One way to do this is by the creation of indices that act as a signal for the policy maker. While factor modelling in finance and economics has a rich history, most of the applications tend to focus on stationary factors. Nevertheless, financial stress (and in particular tail events) can exhibit a high degree of inertia. This paper advocates moving away from the stationary paradigm and instead proposes non-stationary factor models as measures of financial stress. Key advantage of a non-stationary factor model is that while some popular measures of financial stress describe the variance-covariance structure of the financial stress indicators, the new index can capture the tails of the distribution. To showcase this, we use the obtained factors as variables in a growth-at-risk exercise. This paper offers an overview of how to construct non-stationary dynamic factors of financial stress using the UK financial market as an example.

Suggested Citation

  • Katalin Varga & Tibor Szendrei, 2024. "Non-stationary Financial Risk Factors and Macroeconomic Vulnerability for the UK," Papers 2404.01451, arXiv.org.
  • Handle: RePEc:arx:papers:2404.01451
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2404.01451
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ferrara, Laurent & Mogliani, Matteo & Sahuc, Jean-Guillaume, 2022. "High-frequency monitoring of growth at risk," International Journal of Forecasting, Elsevier, vol. 38(2), pages 582-595.
    2. Duprey, Thibaut & Klaus, Benjamin & Peltonen, Tuomas, 2017. "Dating systemic financial stress episodes in the EU countries," Journal of Financial Stability, Elsevier, vol. 32(C), pages 30-56.
    3. Ricardo J. Caballero & Arvind Krishnamurthy, 2008. "Collective Risk Management in a Flight to Quality Episode," Journal of Finance, American Finance Association, vol. 63(5), pages 2195-2230, October.
    4. Castle, Jennifer L. & Doornik, Jurgen A. & Hendry, David F., 2021. "Modelling non-stationary ‘Big Data’," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1556-1575.
    5. Goulet Coulombe, Philippe & Leroux, Maxime & Stevanovic, Dalibor & Surprenant, Stéphane, 2021. "Macroeconomic data transformations matter," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1338-1354.
    6. Alvaro Escribano & Daniel Peña, 1994. "Cointegration And Common Factors," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(6), pages 577-586, November.
    7. Aguilar, Omar & West, Mike, 2000. "Bayesian Dynamic Factor Models and Portfolio Allocation," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 338-357, July.
    8. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    9. Somnath Chatterjee & Ching‐Wai (Jeremy) Chiu & Thibaut Duprey & Sinem Hacıoğlu‐Hoke, 2022. "Systemic Financial Stress and Macroeconomic Amplifications in the United Kingdom," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(2), pages 380-400, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2023. "Tail Forecasting With Multivariate Bayesian Additive Regression Trees," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 979-1022, August.
    2. James Sampi, 2016. "High Dimensional Factor Models: An Empirical Bayes Approach," Working Papers 75, Peruvian Economic Association.
    3. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    4. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    5. Szendrei, Tibor & Varga, Katalin, 2023. "Revisiting vulnerable growth in the Euro Area: Identifying the role of financial conditions in the distribution," Economics Letters, Elsevier, vol. 223(C).
    6. Borus Jungbacker & Siem Jan Koopman, 2008. "Likelihood-based Analysis for Dynamic Factor Models," Tinbergen Institute Discussion Papers 08-007/4, Tinbergen Institute, revised 20 Mar 2014.
    7. Caldeira, João F & Moura, Guilherme Valle & Santos, André Alves Portela, 2013. "Seleção de carteiras utilizando o modelo Fama-French-Carhart," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 67(1), April.
    8. Charles Bos & Neil Shephard, 2006. "Inference for Adaptive Time Series Models: Stochastic Volatility and Conditionally Gaussian State Space Form," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 219-244.
    9. Santos, André A.P. & Moura, Guilherme V., 2014. "Dynamic factor multivariate GARCH model," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 606-617.
    10. S. J. Koopman & G. Mesters, 2017. "Empirical Bayes Methods for Dynamic Factor Models," The Review of Economics and Statistics, MIT Press, vol. 99(3), pages 486-498, July.
    11. K. Triantafyllopoulos, 2008. "Multivariate stochastic volatility using state space models," Papers 0802.0223, arXiv.org.
    12. Escribano, Alvaro & Peña, Daniel & Ruiz, Esther, 2021. "30 years of cointegration and dynamic factor models forecasting and its future with big data: Editorial," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1333-1337.
    13. Philippe Goulet Coulombe, 2022. "A Neural Phillips Curve and a Deep Output Gap," Working Papers 22-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.
    14. Philippe Goulet Coulombe, 2022. "A Neural Phillips Curve and a Deep Output Gap," Papers 2202.04146, arXiv.org.
    15. Charles S. Bos & Siem Jan Koopman, 2010. "Models with Time-varying Mean and Variance: A Robust Analysis of U.S. Industrial Production," Tinbergen Institute Discussion Papers 10-017/4, Tinbergen Institute.
    16. Matteo Barigozzi & Matteo Luciani, 2017. "Common Factors, Trends, and Cycles in Large Datasets," Finance and Economics Discussion Series 2017-111, Board of Governors of the Federal Reserve System (U.S.).
    17. Gijsbert Suren & Guilherme Moura, 2012. "Heteroskedastic Dynamic Factor Models: A Monte Carlo Study," Economics Bulletin, AccessEcon, vol. 32(4), pages 2884-2898.
    18. Philippe Goulet Coulombe & Karin Klieber & Christophe Barrette & Maximilian Goebel, 2024. "Maximally Forward-Looking Core Inflation," Papers 2404.05209, arXiv.org.
    19. repec:fgv:epgrbe:v:67:n:1:a:3 is not listed on IDEAS
    20. Bräuning, Falk & Koopman, Siem Jan, 2020. "The dynamic factor network model with an application to international trade," Journal of Econometrics, Elsevier, vol. 216(2), pages 494-515.
    21. Borus Jungbacker & Siem Jan Koopman, 2015. "Likelihood‐based dynamic factor analysis for measurement and forecasting," Econometrics Journal, Royal Economic Society, vol. 18(2), pages 1-21, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2404.01451. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.