IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2401.01427.html
   My bibliography  Save this paper

Nash Equilibria in Greenhouse Gas Offset Credit Markets

Author

Listed:
  • Liam Welsh
  • Sebastian Jaimungal

Abstract

In response to the global climate crisis, governments worldwide are introducing legislation to reduce greenhouse gas (GHG) emissions to help mitigate environmental catastrophes. One method to encourage emission reductions is to incentivize carbon capturing and carbon reducing projects while simultaneously penalising excess GHG output. Firms that invest in such projects or reduce their emissions can receive offset credits (OCs) in return. They may then use OCs for regulatory purposes to offset emissions in a compliance period or trade them. Here, we present a novel market framework and characterise the optimal behaviour of GHG OC market participants in both single-player and two-player settings. The single player setting is posed as an optimal stopping and control problem, while the two-player setting is posed as optimal stopping and mixed-Nash equilibria problem. We demonstrate the importance of acting optimally using numerical solutions and Monte Carlo simulations and explore the differences between the homogeneous and heterogeneous players.

Suggested Citation

  • Liam Welsh & Sebastian Jaimungal, 2024. "Nash Equilibria in Greenhouse Gas Offset Credit Markets," Papers 2401.01427, arXiv.org, revised Apr 2024.
  • Handle: RePEc:arx:papers:2401.01427
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2401.01427
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Seifert, Jan & Uhrig-Homburg, Marliese & Wagner, Michael, 2008. "Dynamic behavior of CO2 spot prices," Journal of Environmental Economics and Management, Elsevier, vol. 56(2), pages 180-194, September.
    2. Hitzemann, Steffen & Uhrig-Homburg, Marliese, 2018. "Equilibrium Price Dynamics of Emission Permits," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 53(4), pages 1653-1678, August.
    3. Eirik Amundsen & Fridrik Baldursson & Jørgen Mortensen, 2006. "Price Volatility and Banking in Green Certificate Markets," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 35(4), pages 259-287, December.
    4. René Carmona & Gökçe Dayanıklı & Mathieu Laurière, 2022. "Mean Field Models to Regulate Carbon Emissions in Electricity Production," Dynamic Games and Applications, Springer, vol. 12(3), pages 897-928, September.
    5. Martin J. Osborne & Ariel Rubinstein, 1994. "A Course in Game Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262650401, December.
    6. Arvind Shrivats & Sebastian Jaimungal, 2020. "Optimal Generation and Trading in Solar Renewable Energy Certificate (SREC) Markets," Applied Mathematical Finance, Taylor & Francis Journals, vol. 27(1-2), pages 99-131, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dena Firoozi & Arvind V Shrivats & Sebastian Jaimungal, 2021. "Principal agent mean field games in REC markets," Papers 2112.11963, arXiv.org, revised Jun 2022.
    2. Arvind Shrivats & Dena Firoozi & Sebastian Jaimungal, 2020. "A Mean-Field Game Approach to Equilibrium Pricing in Solar Renewable Energy Certificate Markets," Papers 2003.04938, arXiv.org, revised Aug 2021.
    3. Arvind V. Shrivats & Dena Firoozi & Sebastian Jaimungal, 2022. "A mean‐field game approach to equilibrium pricing in solar renewable energy certificate markets," Mathematical Finance, Wiley Blackwell, vol. 32(3), pages 779-824, July.
    4. Arvind Shrivats & Sebastian Jaimungal, 2019. "Optimal Behaviour in Solar Renewable Energy Certificate (SREC) Markets," Papers 1904.06337, arXiv.org, revised Apr 2020.
    5. Estelle Cantillon & Aurélie Slechten, 2018. "Information Aggregation in Emissions Markets with Abatement," Annals of Economics and Statistics, GENES, issue 132, pages 53-79.
    6. Coulon, Michael & Khazaei, Javad & Powell, Warren B., 2015. "SMART-SREC: A stochastic model of the New Jersey solar renewable energy certificate market," Journal of Environmental Economics and Management, Elsevier, vol. 73(C), pages 13-31.
    7. Huang, Zhehao & Dong, Hao & Jia, Shuaishuai, 2022. "Equilibrium pricing for carbon emission in response to the target of carbon emission peaking," Energy Economics, Elsevier, vol. 112(C).
    8. Steven Campbell & Yichao Chen & Arvind Shrivats & Sebastian Jaimungal, 2021. "Deep Learning for Principal-Agent Mean Field Games," Papers 2110.01127, arXiv.org.
    9. Hui, Wang & Xin-gang, Zhao & Ling-zhi, Ren & Fan, Lu, 2021. "An agent-based modeling approach for analyzing the influence of market participants’ strategic behavior on green certificate trading," Energy, Elsevier, vol. 218(C).
    10. Steffen Hitzemann & Marliese Uhrig-Homburg, 2019. "Empirical performance of reduced-form models for emission permit prices," Review of Derivatives Research, Springer, vol. 22(3), pages 389-418, October.
    11. Battigalli, Pierpaolo & Bonanno, Giacomo, 1997. "The Logic of Belief Persistence," Economics and Philosophy, Cambridge University Press, vol. 13(1), pages 39-59, April.
    12. Szabó, György & Borsos, István & Szombati, Edit, 2019. "Games, graphs and Kirchhoff laws," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 416-423.
    13. Grüll, Georg & Taschini, Luca, 2011. "Cap-and-trade properties under different hybrid scheme designs," Journal of Environmental Economics and Management, Elsevier, vol. 61(1), pages 107-118, January.
    14. Shi, Yi & Deng, Yawen & Wang, Guoan & Xu, Jiuping, 2020. "Stackelberg equilibrium-based eco-economic approach for sustainable development of kitchen waste disposal with subsidy policy: A case study from China," Energy, Elsevier, vol. 196(C).
    15. Fang, Sheng & Lu, Xinsheng & Li, Jianfeng & Qu, Ling, 2018. "Multifractal detrended cross-correlation analysis of carbon emission allowance and stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 551-566.
    16. Marc Le Menestrel, 2003. "A one-shot Prisoners’ Dilemma with procedural utility," Economics Working Papers 819, Department of Economics and Business, Universitat Pompeu Fabra.
    17. Cheng‐Kuang Wu & Yi‐Ming Chen & Dachrahn Wu & Ching‐Lin Chi, 2020. "A Game Theory Approach for Assessment of Risk and Deployment of Police Patrols in Response to Criminal Activity in San Francisco," Risk Analysis, John Wiley & Sons, vol. 40(3), pages 534-549, March.
    18. Masaaki Fujii & Akihiko Takahashi, 2021. "Equilibrium Price Formation with a Major Player and its Mean Field Limit," CARF F-Series CARF-F-509, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    19. Nasimeh Heydaribeni & Achilleas Anastasopoulos, 2019. "Linear Equilibria for Dynamic LQG Games with Asymmetric Information and Dependent Types," Papers 1909.04834, arXiv.org.
    20. Müller, Christoph, 2020. "Robust implementation in weakly perfect Bayesian strategies," Journal of Economic Theory, Elsevier, vol. 189(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2401.01427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.