IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2311.12055.html
   My bibliography  Save this paper

Optimal Investment and Fair Sharing Rules of the Incentives for Renewable Energy Communities

Author

Listed:
  • Almendra Awerkin
  • Paolo Falbo
  • Tiziano Vargiolu

Abstract

The focus on Renewable Energy Communities (REC) is fastly growing after the European Union (EU) has introduced a dedicated regulation in 2018. The idea of creating local groups of citizens, small- and medium-sized companies, and public institutions, which self-produce and self-consume energy from renewable sources is at the same time a way to save money for the participants, increase efficiency of the energy system, and reduce CO$_2$ emissions. Member states inside the EU are fixing more detailed regulations, which describe, how public incentives are measured. A natural objective for the incentive policies is of course to promote the self-consumption of a REC. A sophisticated incentive policy is that based on the so called 'virtual framework'. Under this framework all the energy produced by a REC is sold to the market, and all the energy consumed must be paid to retailers: self-consumption occurs only 'virtually', thanks a money compensation (paid by a central authority) for every MWh produced and consumed by the REC in the same hour. In this context, two problems have to be solved: the optimal investment in new technologies and a fair division of the incentive among the community members. We address these problems by considering a particular type of REC, composed by a representative household and a biogas producer, where the potential demand of the community is given by the household's demand, while both members produce renewable energy. We set the problem as a leader-follower problem: the leader decide how to share the incentive for the self-consumed energy, while the followers decide their own optimal installation strategy. We solve the leader's problem by searching for a Nash bargaining solution for the incentive's fair division, while the follower problem is solved by finding the Nash equilibria of a static competitive game between the members.

Suggested Citation

  • Almendra Awerkin & Paolo Falbo & Tiziano Vargiolu, 2023. "Optimal Investment and Fair Sharing Rules of the Incentives for Renewable Energy Communities," Papers 2311.12055, arXiv.org.
  • Handle: RePEc:arx:papers:2311.12055
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2311.12055
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Longxi Li, 2020. "Optimal Coordination Strategies for Load Service Entity and Community Energy Systems Based on Centralized and Decentralized Approaches," Energies, MDPI, vol. 13(12), pages 1-22, June.
    2. Dan Pirjol & Lingjiong Zhu, 2016. "Discrete Sums of Geometric Brownian Motions, Annuities and Asian Options," Papers 1609.07558, arXiv.org.
    3. Abada, I. & Ehrenmann, A. & Lambin, X., 2017. "On the viability of energy communities," Cambridge Working Papers in Economics 1740, Faculty of Economics, University of Cambridge.
    4. Norbu, Sonam & Couraud, Benoit & Robu, Valentin & Andoni, Merlinda & Flynn, David, 2021. "Modelling the redistribution of benefits from joint investments in community energy projects," Applied Energy, Elsevier, vol. 287(C).
    5. Musolino, Monica & Maggio, Gaetano & D'Aleo, Erika & Nicita, Agatino, 2023. "Three case studies to explore relevant features of emerging renewable energy communities in Italy," Renewable Energy, Elsevier, vol. 210(C), pages 540-555.
    6. Tushar, Wayes & Saha, Tapan Kumar & Yuen, Chau & Morstyn, Thomas & McCulloch, Malcolm D. & Poor, H. Vincent & Wood, Kristin L., 2019. "A motivational game-theoretic approach for peer-to-peer energy trading in the smart grid," Applied Energy, Elsevier, vol. 243(C), pages 10-20.
    7. Mitridati, Lesia & Kazempour, Jalal & Pinson, Pierre, 2021. "Design and game-Theoretic analysis of community-Based market mechanisms in heat and electricity systems," Omega, Elsevier, vol. 99(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Steffen Limmer, 2023. "Empirical Study of Stability and Fairness of Schemes for Benefit Distribution in Local Energy Communities," Energies, MDPI, vol. 16(4), pages 1-16, February.
    2. Khorasany, Mohsen & Razzaghi, Reza & Shokri Gazafroudi, Amin, 2021. "Two-stage mechanism design for energy trading of strategic agents in energy communities," Applied Energy, Elsevier, vol. 295(C).
    3. Zhihan Shi & Weisong Han & Guangming Zhang & Zhiqing Bai & Mingxiang Zhu & Xiaodong Lv, 2022. "Research on Low-Carbon Energy Sharing through the Alliance of Integrated Energy Systems with Multiple Uncertainties," Energies, MDPI, vol. 15(24), pages 1-20, December.
    4. Lyu, Cheng & Jia, Youwei & Xu, Zhao, 2021. "Fully decentralized peer-to-peer energy sharing framework for smart buildings with local battery system and aggregated electric vehicles," Applied Energy, Elsevier, vol. 299(C).
    5. Seiji Harikae & James S. Dyer & Tianyang Wang, 2021. "Valuing Real Options in the Volatile Real World," Production and Operations Management, Production and Operations Management Society, vol. 30(1), pages 171-189, January.
    6. João Mello & Cristina de Lorenzo & Fco. Alberto Campos & José Villar, 2023. "Pricing and Simulating Energy Transactions in Energy Communities," Energies, MDPI, vol. 16(4), pages 1-22, February.
    7. Bhatti, Bilal Ahmad & Broadwater, Robert, 2019. "Energy trading in the distribution system using a non-model based game theoretic approach," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    8. Hu, Qian & Zhu, Ziqing & Bu, Siqi & Wing Chan, Ka & Li, Fangxing, 2021. "A multi-market nanogrid P2P energy and ancillary service trading paradigm: Mechanisms and implementations," Applied Energy, Elsevier, vol. 293(C).
    9. Wang, Lu & Gu, Wei & Wu, Zhi & Qiu, Haifeng & Pan, Guangsheng, 2020. "Non-cooperative game-based multilateral contract transactions in power-heating integrated systems," Applied Energy, Elsevier, vol. 268(C).
    10. Li, Bo & Li, Xu & Su, Qingyu, 2022. "A system and game strategy for the isolated island electric-gas deeply coupled energy network," Applied Energy, Elsevier, vol. 306(PA).
    11. Chen, Yang & Park, Byungkwon & Kou, Xiao & Hu, Mengqi & Dong, Jin & Li, Fangxing & Amasyali, Kadir & Olama, Mohammed, 2020. "A comparison study on trading behavior and profit distribution in local energy transaction games," Applied Energy, Elsevier, vol. 280(C).
    12. Tushar, Wayes & Saha, Tapan Kumar & Yuen, Chau & Azim, M. Imran & Morstyn, Thomas & Poor, H. Vincent & Niyato, Dustin & Bean, Richard, 2020. "A coalition formation game framework for peer-to-peer energy trading," Applied Energy, Elsevier, vol. 261(C).
    13. Fontecha, John E. & Nikolaev, Alexander & Walteros, Jose L. & Zhu, Zhenduo, 2022. "Scientists wanted? A literature review on incentive programs that promote pro-environmental consumer behavior: Energy, waste, and water," Socio-Economic Planning Sciences, Elsevier, vol. 82(PA).
    14. Abate, Arega Getaneh & Riccardi, Rossana & Ruiz, Carlos, 2022. "Contract design in electricity markets with high penetration of renewables: A two-stage approach," Omega, Elsevier, vol. 111(C).
    15. García-Muñoz, Fernando & Dávila, Sebastián & Quezada, Franco, 2023. "A Benders decomposition approach for solving a two-stage local energy market problem under uncertainty," Applied Energy, Elsevier, vol. 329(C).
    16. Cortade, Thomas & Poudou, Jean-Christophe, 2022. "Peer-to-peer energy platforms: Incentives for prosuming," Energy Economics, Elsevier, vol. 109(C).
    17. Vinyals, Meritxell, 2021. "Scalable multi-agent local energy trading — Meeting regulatory compliance and validation in the Cardiff grid," Applied Energy, Elsevier, vol. 298(C).
    18. Henni, Sarah & Staudt, Philipp & Weinhardt, Christof, 2021. "A sharing economy for residential communities with PV-coupled battery storage: Benefits, pricing and participant matching," Applied Energy, Elsevier, vol. 301(C).
    19. Soto, Esteban A. & Bosman, Lisa B. & Wollega, Ebisa & Leon-Salas, Walter D., 2021. "Peer-to-peer energy trading: A review of the literature," Applied Energy, Elsevier, vol. 283(C).
    20. Li, Shenglin & Zhu, Jizhong & Chen, Ziyu & Luo, Tengyan, 2021. "Double-layer energy management system based on energy sharing cloud for virtual residential microgrid," Applied Energy, Elsevier, vol. 282(PA).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2311.12055. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.