IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2306.00016.html
   My bibliography  Save this paper

Incorporating Domain Knowledge in Deep Neural Networks for Discrete Choice Models

Author

Listed:
  • Shadi Haj-Yahia
  • Omar Mansour
  • Tomer Toledo

Abstract

Discrete choice models (DCM) are widely employed in travel demand analysis as a powerful theoretical econometric framework for understanding and predicting choice behaviors. DCMs are formed as random utility models (RUM), with their key advantage of interpretability. However, a core requirement for the estimation of these models is a priori specification of the associated utility functions, making them sensitive to modelers' subjective beliefs. Recently, machine learning (ML) approaches have emerged as a promising avenue for learning unobserved non-linear relationships in DCMs. However, ML models are considered "black box" and may not correspond with expected relationships. This paper proposes a framework that expands the potential of data-driven approaches for DCM by supporting the development of interpretable models that incorporate domain knowledge and prior beliefs through constraints. The proposed framework includes pseudo data samples that represent required relationships and a loss function that measures their fulfillment, along with observed data, for model training. The developed framework aims to improve model interpretability by combining ML's specification flexibility with econometrics and interpretable behavioral analysis. A case study demonstrates the potential of this framework for discrete choice analysis.

Suggested Citation

  • Shadi Haj-Yahia & Omar Mansour & Tomer Toledo, 2023. "Incorporating Domain Knowledge in Deep Neural Networks for Discrete Choice Models," Papers 2306.00016, arXiv.org.
  • Handle: RePEc:arx:papers:2306.00016
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2306.00016
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Torres, Cati & Hanley, Nick & Riera, Antoni, 2011. "How wrong can you be? Implications of incorrect utility function specification for welfare measurement in choice experiments," Journal of Environmental Economics and Management, Elsevier, vol. 62(1), pages 111-121, July.
    2. S. Van Cranenburgh & S. Wang & A. Vij & F. Pereira & J. Walker, 2021. "Choice modelling in the age of machine learning -- discussion paper," Papers 2101.11948, arXiv.org, revised Nov 2021.
    3. Sifringer, Brian & Lurkin, Virginie & Alahi, Alexandre, 2020. "Enhancing discrete choice models with representation learning," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 236-261.
    4. Mozolin, M. & Thill, J. -C. & Lynn Usery, E., 2000. "Trip distribution forecasting with multilayer perceptron neural networks: A critical evaluation," Transportation Research Part B: Methodological, Elsevier, vol. 34(1), pages 53-73, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tanmay Ghosh & Nithin Nagaraj, 2024. "Evaluating the Determinants of Mode Choice Using Statistical and Machine Learning Techniques in the Indian Megacity of Bengaluru," Papers 2401.13977, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao, Rui & Bekhor, Shlomo, 2022. "A variational autoencoder approach for choice set generation and implicit perception of alternatives in choice modeling," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 273-294.
    2. Han, Yafei & Pereira, Francisco Camara & Ben-Akiva, Moshe & Zegras, Christopher, 2022. "A neural-embedded discrete choice model: Learning taste representation with strengthened interpretability," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 166-186.
    3. Smeele, Nicholas V.R. & Chorus, Caspar G. & Schermer, Maartje H.N. & de Bekker-Grob, Esther W., 2023. "Towards machine learning for moral choice analysis in health economics: A literature review and research agenda," Social Science & Medicine, Elsevier, vol. 326(C).
    4. Beeramoole, Prithvi Bhat & Arteaga, Cristian & Pinz, Alban & Haque, Md Mazharul & Paz, Alexander, 2023. "Extensive hypothesis testing for estimation of mixed-Logit models," Journal of choice modelling, Elsevier, vol. 47(C).
    5. Sander van Cranenburgh & Francisco Garrido-Valenzuela, 2023. "Computer vision-enriched discrete choice models, with an application to residential location choice," Papers 2308.08276, arXiv.org.
    6. Dubey, Subodh & Cats, Oded & Hoogendoorn, Serge & Bansal, Prateek, 2022. "A multinomial probit model with Choquet integral and attribute cut-offs," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 140-163.
    7. Ioanna Arkoudi & Carlos Lima Azevedo & Francisco C. Pereira, 2021. "Combining Discrete Choice Models and Neural Networks through Embeddings: Formulation, Interpretability and Performance," Papers 2109.12042, arXiv.org, revised Sep 2021.
    8. Tranos, Emmanouil & Incera, Andre Carrascal & Willis, George, 2022. "Using the web to predict regional trade flows: data extraction, modelling, and validation," OSF Preprints 9bu5z, Center for Open Science.
    9. Gevrek, Z.Eylem & Uyduranoglu, Ayse, 2015. "Public preferences for carbon tax attributes," Ecological Economics, Elsevier, vol. 118(C), pages 186-197.
    10. Catalina M. Torres Figuerola & Nick Hanley & Sergio Colombo, 2011. "Incorrectly accounting for taste heterogeneity in choice experiments: Does it really matter for welfare measurement?," CRE Working Papers (Documents de treball del CRE) 2011/1, Centre de Recerca Econòmica (UIB ·"Sa Nostra").
    11. Dieckhoener, Caroline & Hecking, Harald, 2012. "Greenhouse Gas Abatement Cost Curves of the Residential Heating Market – a Microeconomic Approach," EWI Working Papers 2012-16, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    12. Cabrera Delgado, Jorge & Bonnel, Patrick, 2016. "Level of aggregation of zoning and temporal transferability of the gravity distribution model: The case of Lyon," Journal of Transport Geography, Elsevier, vol. 51(C), pages 17-26.
    13. John V. Colias & Stella Park & Elizabeth Horn, 2021. "Optimizing B2B product offers with machine learning, mixed logit, and nonlinear programming," Journal of Marketing Analytics, Palgrave Macmillan, vol. 9(3), pages 157-172, September.
    14. Krucien, Nicolas & Heidenreich, Sebastian & Gafni, Amiram & Pelletier-Fleury, Nathalie, 2020. "Measuring public preferences in France for potential consequences stemming from re-allocation of healthcare resources," Social Science & Medicine, Elsevier, vol. 246(C).
    15. Halás, Marián & Klapka, Pavel & Kladivo, Petr, 2014. "Distance-decay functions for daily travel-to-work flows," Journal of Transport Geography, Elsevier, vol. 35(C), pages 107-119.
    16. Wiktor Budziński, 2015. "The effects of non-constant marginal utility of cost for public goods valuation," Ekonomia journal, Faculty of Economic Sciences, University of Warsaw, vol. 43.
    17. María Vega-Gonzalo & Panayotis Christidis, 2022. "Fair Models for Impartial Policies: Controlling Algorithmic Bias in Transport Behavioural Modelling," Sustainability, MDPI, vol. 14(14), pages 1-23, July.
    18. Z. Eylem Gevrek & Ayse Uyduranoglu, 2015. "Public Preferences for Carbon Tax Attributes," Working Paper Series of the Department of Economics, University of Konstanz 2015-15, Department of Economics, University of Konstanz.
    19. Tomás del Barrio Casto & William Nilsson & Andrés J. Picazo-Tadeo, 2013. "How wrong can you be, without noticing? Further evidence on speci?cation errors in the Conditional Logit," Working Papers 1318, Department of Applied Economics II, Universidad de Valencia.
    20. Michela Faccioli & Nick Hanley & Catalina M. Torres Figuerola & Antoni Riera Font, 2015. "Do we care about sustainability? An analysis of time sensitivity of social preferences under environmental time-persistent effects," Discussion Papers in Environment and Development Economics 2015-17, University of St. Andrews, School of Geography and Sustainable Development.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2306.00016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.