IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2203.06640.html
   My bibliography  Save this paper

Measuring anomalies in cigarette sales by using official data from Spanish provinces: Are there only the anomalies detected by the Empty Pack Surveys (EPS) used by Transnational Tobacco Companies (TTCs)?

Author

Listed:
  • Pedro Cadahia
  • Antonio A. Golpe
  • Juan M. Mart'in 'Alvarez
  • E. Asensio

Abstract

There is literature that questions the veracity of the studies commissioned by the transnational tobacco companies (TTC) to measure the illicit tobacco trade. Furthermore, there are studies that indicate that the Empty Pack Surveys (EPS) ordered by the TTCs are oversized. The novelty of this study is that, in addition to detecting the anomalies analyzed in the EPSs, there are provinces in which cigarette sales are higher than reasonable values, something that the TTCs ignore. This study analyzed simultaneously, firstly, if the EPSs established in each of the 47 Spanish provinces were fulfilled. Second, anomalies observed in provinces where sales exceed expected values are measured. To achieve the objective of the paper, provincial data on cigarette sales, price and GDP per capita are used. These data are modeled with machine learning techniques widely used to detect anomalies in other areas. The results reveal that the provinces in which sales below reasonable values are observed (as detected by the EPSs) present a clear geographical pattern. Furthermore, the values provided by the EPSs in Spain, as indicated in the previous literature, are slightly oversized. Finally, there are regions bordering other countries or with a high tourist influence in which the observed sales are higher than the expected values.

Suggested Citation

  • Pedro Cadahia & Antonio A. Golpe & Juan M. Mart'in 'Alvarez & E. Asensio, 2022. "Measuring anomalies in cigarette sales by using official data from Spanish provinces: Are there only the anomalies detected by the Empty Pack Surveys (EPS) used by Transnational Tobacco Companies (TTC," Papers 2203.06640, arXiv.org.
  • Handle: RePEc:arx:papers:2203.06640
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2203.06640
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Wenjie & Quan, Hao & Srinivasan, Dipti, 2018. "Parallel and reliable probabilistic load forecasting via quantile regression forest and quantile determination," Energy, Elsevier, vol. 160(C), pages 810-819.
    2. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    3. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    4. Alberto Aziani & Marco Dugato & Cecilia Meneghini, 2020. "A methodology for estimating the illicit consumption of cigarettes at the country level," Global Crime, Taylor & Francis Journals, vol. 21(2), pages 154-184, April.
    5. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    6. Nagy, Gábor I. & Barta, Gergő & Kazi, Sándor & Borbély, Gyula & Simon, Gábor, 2016. "GEFCom2014: Probabilistic solar and wind power forecasting using a generalized additive tree ensemble approach," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1087-1093.
    7. Gallego, Juan M. & Llorente, Blanca & Maldonado, Norman & Otálvaro-Ramírez, Susana & Rodríguez-Lesmes, Paul, 2020. "Tobacco taxes and illicit cigarette trade in Colombia," Economics & Human Biology, Elsevier, vol. 39(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gensler, André & Sick, Bernhard & Vogt, Stephan, 2018. "A review of uncertainty representations and metaverification of uncertainty assessment techniques for renewable energies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 352-379.
    2. Müller, Alfred & Reuber, Matthias, 2023. "A copula-based time series model for global horizontal irradiation," International Journal of Forecasting, Elsevier, vol. 39(2), pages 869-883.
    3. Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.
    4. Ferrara, Laurent & Mogliani, Matteo & Sahuc, Jean-Guillaume, 2022. "High-frequency monitoring of growth at risk," International Journal of Forecasting, Elsevier, vol. 38(2), pages 582-595.
    5. Pfarrhofer, Michael, 2022. "Modeling tail risks of inflation using unobserved component quantile regressions," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    6. Olivares, Kin G. & Challu, Cristian & Marcjasz, Grzegorz & Weron, Rafał & Dubrawski, Artur, 2023. "Neural basis expansion analysis with exogenous variables: Forecasting electricity prices with NBEATSx," International Journal of Forecasting, Elsevier, vol. 39(2), pages 884-900.
    7. Yang, Dazhi & Yang, Guoming & Liu, Bai, 2023. "Combining quantiles of calibrated solar forecasts from ensemble numerical weather prediction," Renewable Energy, Elsevier, vol. 215(C).
    8. Li, Li & Kang, Yanfei & Li, Feng, 2023. "Bayesian forecast combination using time-varying features," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1287-1302.
    9. Konrad Bogner & Katharina Liechti & Luzi Bernhard & Samuel Monhart & Massimiliano Zappa, 2018. "Skill of Hydrological Extended Range Forecasts for Water Resources Management in Switzerland," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(3), pages 969-984, February.
    10. Satopää, Ville A., 2021. "Improving the wisdom of crowds with analysis of variance of predictions of related outcomes," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1728-1747.
    11. Buzna, Luboš & De Falco, Pasquale & Ferruzzi, Gabriella & Khormali, Shahab & Proto, Daniela & Refa, Nazir & Straka, Milan & van der Poel, Gijs, 2021. "An ensemble methodology for hierarchical probabilistic electric vehicle load forecasting at regular charging stations," Applied Energy, Elsevier, vol. 283(C).
    12. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    13. Brentnall, Adam R. & Crowder, Martin J. & Hand, David J., 2010. "Predictive-sequential forecasting system development for cash machine stocking," International Journal of Forecasting, Elsevier, vol. 26(4), pages 764-776, October.
    14. Yang, Dazhi & van der Meer, Dennis, 2021. "Post-processing in solar forecasting: Ten overarching thinking tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    15. Wang, Xiaoqian & Kang, Yanfei & Hyndman, Rob J. & Li, Feng, 2023. "Distributed ARIMA models for ultra-long time series," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1163-1184.
    16. Tepegjozova Marija & Zhou Jing & Claeskens Gerda & Czado Claudia, 2022. "Nonparametric C- and D-vine-based quantile regression," Dependence Modeling, De Gruyter, vol. 10(1), pages 1-21, January.
    17. Alexander Razen & Wolfgang Brunauer & Nadja Klein & Thomas Kneib & Stefan Lang & Nikolaus Umlauf, 2014. "Statistical Risk Analysis for Real Estate Collateral Valuation using Bayesian Distributional and Quantile Regression," Working Papers 2014-12, Faculty of Economics and Statistics, Universität Innsbruck.
    18. van der Meer, D.W. & Widén, J. & Munkhammar, J., 2018. "Review on probabilistic forecasting of photovoltaic power production and electricity consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1484-1512.
    19. Snyder, Ralph D. & Ord, J. Keith & Beaumont, Adrian, 2012. "Forecasting the intermittent demand for slow-moving inventories: A modelling approach," International Journal of Forecasting, Elsevier, vol. 28(2), pages 485-496.
    20. van der Meer, D.W. & Shepero, M. & Svensson, A. & Widén, J. & Munkhammar, J., 2018. "Probabilistic forecasting of electricity consumption, photovoltaic power generation and net demand of an individual building using Gaussian Processes," Applied Energy, Elsevier, vol. 213(C), pages 195-207.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2203.06640. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.