IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2001.08906.html
   My bibliography  Save this paper

Pricing commodity swing options

Author

Listed:
  • Roberto Daluiso
  • Emanuele Nastasi
  • Andrea Pallavicini
  • Giulio Sartorelli

Abstract

In commodity and energy markets swing options allow the buyer to hedge against futures price fluctuations and to select its preferred delivery strategy within daily or periodic constraints, possibly fixed by observing quoted futures contracts. In this paper we focus on the natural gas market and we present a dynamical model for commodity futures prices able to calibrate liquid market quotes and to imply the volatility smile for futures contracts with different delivery periods. We implement the numerical problem by means of a least-square Monte Carlo simulation and we investigate alternative approaches based on reinforcement learning algorithms.

Suggested Citation

  • Roberto Daluiso & Emanuele Nastasi & Andrea Pallavicini & Giulio Sartorelli, 2020. "Pricing commodity swing options," Papers 2001.08906, arXiv.org.
  • Handle: RePEc:arx:papers:2001.08906
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2001.08906
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thompson, Andrew C., 1995. "Valuation of Path-Dependent Contingent Claims with Multiple Exercise Decisions over Time: The Case of Take-or-Pay," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 30(2), pages 271-293, June.
    2. Marcus Eriksson & Jukka Lempa & Trygve Nilssen, 2014. "Swing options in commodity markets: a multidimensional Lévy diffusion model," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 79(1), pages 31-67, February.
    3. Ben Hambly & Sam Howison & Tino Kluge, 2009. "Modelling spikes and pricing swing options in electricity markets," Quantitative Finance, Taylor & Francis Journals, vol. 9(8), pages 937-949.
    4. Sebastian Becker & Patrick Cheridito & Arnulf Jentzen & Timo Welti, 2019. "Solving high-dimensional optimal stopping problems using deep learning," Papers 1908.01602, arXiv.org, revised Aug 2021.
    5. René Carmona & Nizar Touzi, 2008. "Optimal Multiple Stopping And Valuation Of Swing Options," Mathematical Finance, Wiley Blackwell, vol. 18(2), pages 239-268, April.
    6. Patrick Jaillet & Ehud I. Ronn & Stathis Tompaidis, 2004. "Valuation of Commodity-Based Swing Options," Management Science, INFORMS, vol. 50(7), pages 909-921, July.
    7. H. Berestycki & J. Busca & I. Florent, 2002. "Asymptotics and calibration of local volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 2(1), pages 61-69.
    8. Christophe Barrera-Esteve & Florent Bergeret & Charles Dossal & Emmanuel Gobet & Asma Meziou & Rémi Munos & Damien Reboul-Salze, 2006. "Numerical Methods for the Pricing of Swing Options: A Stochastic Control Approach," Methodology and Computing in Applied Probability, Springer, vol. 8(4), pages 517-540, December.
    9. Fred Espen Benth & Marco Piccirilli & Tiziano Vargiolu, 2017. "Additive energy forward curves in a Heath-Jarrow-Morton framework," Papers 1709.03310, arXiv.org, revised Jun 2018.
    10. Olivier Bardou & Sandrine Bouthemy & Gilles Pages, 2009. "Optimal Quantization for the Pricing of Swing Options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 16(2), pages 183-217.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. John Ery & Loris Michel, 2021. "Solving optimal stopping problems with Deep Q-Learning," Papers 2101.09682, arXiv.org.
    2. Nicolas Curin & Michael Kettler & Xi Kleisinger-Yu & Vlatka Komaric & Thomas Krabichler & Josef Teichmann & Hanna Wutte, 2021. "A deep learning model for gas storage optimization," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 1021-1037, December.
    3. Nicolas Curin & Michael Kettler & Xi Kleisinger-Yu & Vlatka Komaric & Thomas Krabichler & Josef Teichmann & Hanna Wutte, 2021. "A deep learning model for gas storage optimization," Papers 2102.01980, arXiv.org, revised Mar 2021.
    4. Tapio Behrndt & Ren-Raw Chen, 2022. "A New Look at the Swing Contract: From Linear Programming to Particle Swarm Optimization," JRFM, MDPI, vol. 15(6), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiziano De Angelis & Yerkin Kitapbayev, 2018. "On the Optimal Exercise Boundaries of Swing Put Options," Mathematics of Operations Research, INFORMS, vol. 43(1), pages 252-274, February.
    2. Hendrik Kohrs & Hermann Mühlichen & Benjamin R. Auer & Frank Schuhmacher, 2019. "Pricing and risk of swing contracts in natural gas markets," Review of Derivatives Research, Springer, vol. 22(1), pages 77-167, April.
    3. Dong, Wenfeng & Kang, Boda, 2019. "Analysis of a multiple year gas sales agreement with make-up, carry-forward and indexation," Energy Economics, Elsevier, vol. 79(C), pages 76-96.
    4. J. Lars Kirkby & Shi-Jie Deng, 2019. "Swing Option Pricing By Dynamic Programming With B-Spline Density Projection," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(08), pages 1-53, December.
    5. M. Basei & A. Cesaroni & T. Vargiolu, 2013. "Optimal exercise of swing contracts in energy markets: an integral constrained stochastic optimal control problem," Papers 1307.1320, arXiv.org.
    6. Nicolas Essis-Breton & Patrice Gaillardetz, 2020. "Fast Lower and Upper Estimates for the Price of Constrained Multiple Exercise American Options by Single Pass Lookahead Search and Nearest-Neighbor Martingale," Papers 2002.11258, arXiv.org.
    7. Tiziano De Angelis & Yerkin Kitapbayev, 2014. "On the optimal exercise boundaries of swing put options," Papers 1407.6860, arXiv.org, revised Jan 2017.
    8. Kourouvakalis, Stylianos, 2008. "Méthodes numériques pour la valorisation d'options swings et autres problèmes sur les matières premières," Economics Thesis from University Paris Dauphine, Paris Dauphine University, number 123456789/116 edited by Geman, Hélyette.
    9. Soren Christensen & Albrecht Irle & Stephan Jurgens, 2012. "Optimal multiple stopping with random waiting times," Papers 1205.1966, arXiv.org.
    10. Christian Bender & Nikolai Dokuchaev, 2013. "A First-Order BSPDE for Swing Option Pricing," Papers 1305.3988, arXiv.org.
    11. Felix, Bastian Joachim & Weber, Christoph, 2012. "Gas storage valuation applying numerically constructed recombining trees," European Journal of Operational Research, Elsevier, vol. 216(1), pages 178-187.
    12. Kovacevic, Raimund M. & Pflug, Georg Ch., 2014. "Electricity swing option pricing by stochastic bilevel optimization: A survey and new approaches," European Journal of Operational Research, Elsevier, vol. 237(2), pages 389-403.
    13. Carl Chiarella & Les Clewlow & Boda Kang, 2016. "The Evaluation Of Multiple Year Gas Sales Agreement With Regime Switching," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(01), pages 1-25, February.
    14. Francisco Bernal & Emmanuel Gobet & Jacques Printems, 2020. "Volatility Uncertainty Quantification in a Stochastic Control Problem Applied to Energy," Methodology and Computing in Applied Probability, Springer, vol. 22(1), pages 135-159, March.
    15. Piergiacomo Sabino, 2021. "Normal Tempered Stable Processes and the Pricing of Energy Derivatives," Papers 2105.03071, arXiv.org.
    16. Giorgia Callegaro & Luciano Campi & Valeria Giusto & Tiziano Vargiolu, 2017. "Utility indifference pricing and hedging for structured contracts in energy markets," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(2), pages 265-303, April.
    17. Marcus Eriksson & Jukka Lempa & Trygve Nilssen, 2014. "Swing options in commodity markets: a multidimensional Lévy diffusion model," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 79(1), pages 31-67, February.
    18. N. Aleksandrov & B. Hambly, 2010. "A dual approach to multiple exercise option problems under constraints," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 71(3), pages 503-533, June.
    19. Edoli, Enrico & Fiorenzani, Stefano & Ravelli, Samuele & Vargiolu, Tiziano, 2013. "Modeling and valuing make-up clauses in gas swing contracts," Energy Economics, Elsevier, vol. 35(C), pages 58-73.
    20. Vincent Lemaire & Gilles Pag`es & Christian Yeo, 2023. "Swing contract pricing: with and without Neural Networks," Papers 2306.03822, arXiv.org, revised Mar 2024.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2001.08906. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.