IDEAS home Printed from https://ideas.repec.org/a/wsi/ijtafx/v19y2016i01ns0219024916500059.html
   My bibliography  Save this article

The Evaluation Of Multiple Year Gas Sales Agreement With Regime Switching

Author

Listed:
  • CARL CHIARELLA

    (Finance Discipline Group, UTS Business School, University of Technology, Sydney, PO Box 123, Broadway, NSW 2007, Australia)

  • LES CLEWLOW

    (Lacima Group, Level 32, 1 Market Street, Sydney, NSW 2000, Australia)

  • BODA KANG

    (Department of Mathematics, University of York, Heslington, York, YO10 5DD, United Kingdom)

Abstract

A typical gas sales agreement (GSA), also called a gas swing contract, is an agreement between a supplier and a purchaser for the delivery of variable daily quantities of gas, between specified minimum and maximum daily limits, over a certain number of years at a specified set of contract prices. The main constraint of such an agreement that makes them difficult to value is that in each gas year there is a minimum volume of gas (termed take-or-pay or minimum bill) for which the buyer will be charged at the end of the year (or penalty date), regardless of the actual quantity of gas taken. We propose a framework for pricing such swing contracts for an underlying gas forward price curve that follows a regime switching process in order to better capture the volatility behavior in such markets. With the help of a recombining pentanomial tree, we are able to efficiently evaluate the prices of the swing contracts, find optimal daily decisions and optimal yearly use of both the make-up bank and the carry forward bank at different regimes. We also show how the change of regime will affect the decisions.

Suggested Citation

  • Carl Chiarella & Les Clewlow & Boda Kang, 2016. "The Evaluation Of Multiple Year Gas Sales Agreement With Regime Switching," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(01), pages 1-25, February.
  • Handle: RePEc:wsi:ijtafx:v:19:y:2016:i:01:n:s0219024916500059
    DOI: 10.1142/S0219024916500059
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219024916500059
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219024916500059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Vo, Minh T., 2009. "Regime-switching stochastic volatility: Evidence from the crude oil market," Energy Economics, Elsevier, vol. 31(5), pages 779-788, September.
    2. Schwartz, Eduardo S, 1997. "The Stochastic Behavior of Commodity Prices: Implications for Valuation and Hedging," Journal of Finance, American Finance Association, vol. 52(3), pages 923-973, July.
    3. Thompson, Andrew C., 1995. "Valuation of Path-Dependent Contingent Claims with Multiple Exercise Decisions over Time: The Case of Take-or-Pay," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 30(2), pages 271-293, June.
    4. Edoli, Enrico & Fiorenzani, Stefano & Ravelli, Samuele & Vargiolu, Tiziano, 2013. "Modeling and valuing make-up clauses in gas swing contracts," Energy Economics, Elsevier, vol. 35(C), pages 58-73.
    5. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    6. M. Basei & A. Cesaroni & T. Vargiolu, 2013. "Optimal exercise of swing contracts in energy markets: an integral constrained stochastic optimal control problem," Papers 1307.1320, arXiv.org.
    7. Christophe Barrera-Esteve & Florent Bergeret & Charles Dossal & Emmanuel Gobet & Asma Meziou & Rémi Munos & Damien Reboul-Salze, 2006. "Numerical Methods for the Pricing of Swing Options: A Stochastic Control Approach," Methodology and Computing in Applied Probability, Springer, vol. 8(4), pages 517-540, December.
    8. Les Clewlow & Chris Strickland, 1999. "Valuing Energy Options in a One Factor Model Fitted to Forward Prices," Research Paper Series 10, Quantitative Finance Research Centre, University of Technology, Sydney.
    9. Carl Chiarella & Les Clewlow & Boda Kang, 2009. "Modelling and Estimating the Forward Price Curve in the Energy Market," Research Paper Series 260, Quantitative Finance Research Centre, University of Technology, Sydney.
    10. M. Wahab & Chi-Guhn Lee, 2011. "Pricing swing options with regime switching," Annals of Operations Research, Springer, vol. 185(1), pages 139-160, May.
    11. Rene Carmona & Michael Ludkovski, 2010. "Valuation of energy storage: an optimal switching approach," Quantitative Finance, Taylor & Francis Journals, vol. 10(4), pages 359-374.
    12. Gibson, Rajna & Schwartz, Eduardo S, 1990. "Stochastic Convenience Yield and the Pricing of Oil Contingent Claims," Journal of Finance, American Finance Association, vol. 45(3), pages 959-976, July.
    13. Olivier Bardou & Sandrine Bouthemy & Gilles Pages, 2009. "Optimal Quantization for the Pricing of Swing Options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 16(2), pages 183-217.
    14. M. I. M. Wahab & Z. Yin & N. C. P. Edirisinghe, 2010. "Pricing swing options in the electricity markets under regime-switching uncertainty," Quantitative Finance, Taylor & Francis Journals, vol. 10(9), pages 975-994.
    15. Les Clewlow & Chris Strickland, 1999. "A Multi-Factor Model for Energy Derivatives," Research Paper Series 28, Quantitative Finance Research Centre, University of Technology, Sydney.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong, Wenfeng & Kang, Boda, 2019. "Analysis of a multiple year gas sales agreement with make-up, carry-forward and indexation," Energy Economics, Elsevier, vol. 79(C), pages 76-96.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hendrik Kohrs & Hermann Mühlichen & Benjamin R. Auer & Frank Schuhmacher, 2019. "Pricing and risk of swing contracts in natural gas markets," Review of Derivatives Research, Springer, vol. 22(1), pages 77-167, April.
    2. Dong, Wenfeng & Kang, Boda, 2019. "Analysis of a multiple year gas sales agreement with make-up, carry-forward and indexation," Energy Economics, Elsevier, vol. 79(C), pages 76-96.
    3. J. Lars Kirkby & Shi-Jie Deng, 2019. "Swing Option Pricing By Dynamic Programming With B-Spline Density Projection," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(08), pages 1-53, December.
    4. Carl Chiarella & Les Clewlow & Boda Kang, 2009. "Modelling and Estimating the Forward Price Curve in the Energy Market," Research Paper Series 260, Quantitative Finance Research Centre, University of Technology, Sydney.
    5. Chantziara, Thalia & Skiadopoulos, George, 2008. "Can the dynamics of the term structure of petroleum futures be forecasted? Evidence from major markets," Energy Economics, Elsevier, vol. 30(3), pages 962-985, May.
    6. Bisht Deepak & Laha, A. K., 2017. "Pricing Option on Commodity Futures under String Shock," IIMA Working Papers WP 2017-07-02, Indian Institute of Management Ahmedabad, Research and Publication Department.
    7. Deschatre, Thomas & Féron, Olivier & Gruet, Pierre, 2021. "A survey of electricity spot and futures price models for risk management applications," Energy Economics, Elsevier, vol. 102(C).
    8. Benth, Fred Espen & Koekebakker, Steen, 2015. "Pricing of forwards and other derivatives in cointegrated commodity markets," Energy Economics, Elsevier, vol. 52(PA), pages 104-117.
    9. Crosby, John & Frau, Carme, 2022. "Jumps in commodity prices: New approaches for pricing plain vanilla options," Energy Economics, Elsevier, vol. 114(C).
    10. Secomandi, Nicola & Seppi, Duane J., 2014. "Real Options and Merchant Operations of Energy and Other Commodities," Foundations and Trends(R) in Technology, Information and Operations Management, now publishers, vol. 6(3-4), pages 161-331, July.
    11. Chiarella, Carl & Kang, Boda & Nikitopoulos, Christina Sklibosios & Tô, Thuy-Duong, 2013. "Humps in the volatility structure of the crude oil futures market: New evidence," Energy Economics, Elsevier, vol. 40(C), pages 989-1000.
    12. Max F. Schöne & Stefan Spinler, 2017. "A four-factor stochastic volatility model of commodity prices," Review of Derivatives Research, Springer, vol. 20(2), pages 135-165, July.
    13. repec:dau:papers:123456789/11439 is not listed on IDEAS
    14. Corinne Chaton & Laure Durand‐Viel, 2013. "Real Asset Valuation under Imperfect Competition: Can We Forget About Market Fundamentals?," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 22(1), pages 125-139, March.
    15. Rajnish Kamat & Shmuel S. Oren, 2002. "Exotic Options for Interruptible Electricity Supply Contracts," Operations Research, INFORMS, vol. 50(5), pages 835-850, October.
    16. John Crosby, 2008. "A multi-factor jump-diffusion model for commodities," Quantitative Finance, Taylor & Francis Journals, vol. 8(2), pages 181-200.
    17. Feng, Ling & Wang, Jieyu, 2023. "Random sources correlations and carbon futures pricing," International Review of Financial Analysis, Elsevier, vol. 86(C).
    18. Anders B. Trolle & Eduardo S. Schwartz, 2006. "Unspanned Stochastic Volatility and the Pricing of Commodity Derivatives," NBER Working Papers 12744, National Bureau of Economic Research, Inc.
    19. Giorgia Callegaro & Luciano Campi & Valeria Giusto & Tiziano Vargiolu, 2017. "Utility indifference pricing and hedging for structured contracts in energy markets," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(2), pages 265-303, April.
    20. Koekebakker, Steen & Adland, Roar & Sødal, Sigbjørn, 2007. "Pricing freight rate options," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(5), pages 535-548, September.
    21. Anders B. Trolle & Eduardo S. Schwartz, 2009. "Unspanned Stochastic Volatility and the Pricing of Commodity Derivatives," Review of Financial Studies, Society for Financial Studies, vol. 22(11), pages 4423-4461, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:19:y:2016:i:01:n:s0219024916500059. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.