IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1409.6443.html
   My bibliography  Save this paper

Signal Diffusion Mapping: Optimal Forecasting with Time Varying Lags

Author

Listed:
  • Paul Gaskell
  • Frank McGroarty
  • Thanassis Tiropanis

Abstract

We introduce a new methodology for forecasting which we call Signal Diffusion Mapping. Our approach accommodates features of real world financial data which have been ignored historically in existing forecasting methodologies. Our method builds upon well-established and accepted methods from other areas of statistical analysis. We develop and adapt those models for use in forecasting. We also present tests of our model on data in which we demonstrate the efficacy of our approach.

Suggested Citation

  • Paul Gaskell & Frank McGroarty & Thanassis Tiropanis, 2014. "Signal Diffusion Mapping: Optimal Forecasting with Time Varying Lags," Papers 1409.6443, arXiv.org.
  • Handle: RePEc:arx:papers:1409.6443
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1409.6443
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carvalho, Carlos M. & Lopes, Hedibert F., 2007. "Simulation-based sequential analysis of Markov switching stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4526-4542, May.
    2. Didier Sornette & Wei-Xing Zhou, 2005. "Non-parametric determination of real-time lag structure between two time series: the 'optimal thermal causal path' method," Quantitative Finance, Taylor & Francis Journals, vol. 5(6), pages 577-591.
    3. Hong, Yongmiao & Liu, Yanhui & Wang, Shouyang, 2009. "Granger causality in risk and detection of extreme risk spillover between financial markets," Journal of Econometrics, Elsevier, vol. 150(2), pages 271-287, June.
    4. Hedibert F. Lopes & Ruey S. Tsay, 2011. "Particle filters and Bayesian inference in financial econometrics," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(1), pages 168-209, January.
    5. Yin-Wong Cheung & Menzie D. Chinn & Ian W. Marsh, 2004. "How do UK-based foreign exchange dealers think their market operates?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 9(4), pages 289-306.
    6. Zhou, Wei-Xing & Sornette, Didier, 2007. "Lead-lag cross-sectional structure and detection of correlated–anticorrelated regime shifts: Application to the volatilities of inflation and economic growth rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 287-296.
    7. Hans Manner & Olga Reznikova, 2012. "A Survey on Time-Varying Copulas: Specification, Simulations, and Application," Econometric Reviews, Taylor & Francis Journals, vol. 31(6), pages 654-687, November.
    8. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    9. Hiemstra, Craig & Jones, Jonathan D, 1994. "Testing for Linear and Nonlinear Granger Causality in the Stock Price-Volume Relation," Journal of Finance, American Finance Association, vol. 49(5), pages 1639-1664, December.
    10. Adel Sharkasi & Heather J. Ruskin & Martin Crane, 2005. "Interrelationships Among International Stock Market Indices: Europe, Asia And The Americas," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 8(05), pages 603-622.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Tao & Bao, Si & Li, Long, 2019. "The linear and nonlinear lead–lag relationship among three SSE 50 Index markets: The index futures, 50ETF spot and options markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 878-893.
    2. Neto, David, 2022. "Examining interconnectedness between media attention and cryptocurrency markets: A transfer entropy story," Economics Letters, Elsevier, vol. 214(C).
    3. Li, Haiqi & Zhong, Wanling & Park, Sung Y., 2016. "Generalized cross-spectral test for nonlinear Granger causality with applications to money–output and price–volume relations," Economic Modelling, Elsevier, vol. 52(PB), pages 661-671.
    4. Stephanie-Carolin Grosche, 2014. "What Does Granger Causality Prove? A Critical Examination of the Interpretation of Granger Causality Results on Price Effects of Index Trading in Agricultural Commodity Markets," Journal of Agricultural Economics, Wiley Blackwell, vol. 65(2), pages 279-302, June.
    5. Hong Cheng & Yunqing Wang & Yihong Wang & Tinggan Yang, 2022. "Inferring Causal Interactions in Financial Markets Using Conditional Granger Causality Based on Quantile Regression," Computational Economics, Springer;Society for Computational Economics, vol. 59(2), pages 719-748, February.
    6. Chuang, Chia-Chang & Kuan, Chung-Ming & Lin, Hsin-Yi, 2009. "Causality in quantiles and dynamic stock return-volume relations," Journal of Banking & Finance, Elsevier, vol. 33(7), pages 1351-1360, July.
    7. Magdalena Osinska, 2011. "On the Interpretation of Causality in Granger’s Sense," Dynamic Econometric Models, Uniwersytet Mikolaja Kopernika, vol. 11, pages 129-140.
    8. Zhicheng Liang & Junwei Wang & Kin Keung Lai, 2020. "Dependence Structure Analysis and VaR Estimation Based on China’s and International Gold Price: A Copula Approach," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 19(01), pages 169-193, February.
    9. Wang, Lu & Ma, Feng & Niu, Tianjiao & He, Chengting, 2020. "Crude oil and BRICS stock markets under extreme shocks: New evidence," Economic Modelling, Elsevier, vol. 86(C), pages 54-68.
    10. Yao, Can-Zhong & Lin, Ji-Nan & Lin, Qing-Wen & Zheng, Xu-Zhou & Liu, Xiao-Feng, 2016. "A study of causality structure and dynamics in industrial electricity consumption based on Granger network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 297-320.
    11. Shao, Ying-Hui & Yang, Yan-Hong & Shao, Hao-Lin & Stanley, H. Eugene, 2019. "Time-varying lead–lag structure between the crude oil spot and futures markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 723-733.
    12. Nishiyama, Yoshihiko & Hitomi, Kohtaro & Kawasaki, Yoshinori & Jeong, Kiho, 2011. "A consistent nonparametric test for nonlinear causality—Specification in time series regression," Journal of Econometrics, Elsevier, vol. 165(1), pages 112-127.
    13. Kun Guo & Wei-Xing Zhou & Si-Wei Cheng & Didier Sornette, 2011. "The US Stock Market Leads the Federal Funds Rate and Treasury Bond Yields," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-9, August.
    14. Ren, Weijie & Li, Baisong & Han, Min, 2020. "A novel Granger causality method based on HSIC-Lasso for revealing nonlinear relationship between multivariate time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    15. Liow, Kim Hiang & Huang, Yuting, 2018. "The dynamics of volatility connectedness in international real estate investment trusts," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 55(C), pages 195-210.
    16. Xiaojuan He & Dervis Kirikkaleli & Melike Torun & Zecheng Li, 2021. "Modeling Economic Risk in the QISMUT Countries: Evidence From Nonlinear Cointegration Tests," SAGE Open, , vol. 11(4), pages 21582440211, October.
    17. Adeosun, Opeoluwa Adeniyi & Tabash, Mosab I. & Anagreh, Suhaib, 2022. "Oil price and economic performance: Additional evidence from advanced economies," Resources Policy, Elsevier, vol. 77(C).
    18. Kenichiro McAlinn & Asahi Ushio & Teruo Nakatsuma, 2016. "Volatility Forecasts Using Nonlinear Leverage Effects," Papers 1605.06482, arXiv.org, revised Dec 2017.
    19. Soylu, Pınar Kaya & Güloğlu, Bülent, 2019. "Financial contagion and flight to quality between emerging markets and U.S. bond market," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    20. Wang, Zijun & Qian, Yan & Wang, Shiwen, 2018. "Dynamic trading volume and stock return relation: Does it hold out of sample?," International Review of Financial Analysis, Elsevier, vol. 58(C), pages 195-210.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1409.6443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.