Advanced Search
MyIDEAS: Login

On Admissible Strategies in Robust Utility Maximization

Contents:

Author Info

  • Keita Owari

Abstract

The existence of optimal strategy in robust utility maximization is addressed when the utility function is finite on the entire real line. A delicate problem in this case is to find a "good definition" of admissible strategies, so that an optimizer is obtained. Under suitable assumptions, especially a time-consistency property of the set of probabilities which describes the model uncertainty, we show that an optimal strategy is obtained in the class of strategies whose wealths are supermartingales under all local martingale measures having a finite generalized entropy with at least one of candidate models (probabilities).

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://arxiv.org/pdf/1109.5512
File Function: Latest version
Download Restriction: no

Bibliographic Info

Paper provided by arXiv.org in its series Papers with number 1109.5512.

as in new window
Length:
Date of creation: Sep 2011
Date of revision: Mar 2012
Publication status: Published in Mathematics and Financial Economics, Vol. 6, No. 2, pp. 77-92, 2012
Handle: RePEc:arx:papers:1109.5512

Contact details of provider:
Web page: http://arxiv.org/

Related research

Keywords:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Keita Owari, 2011. "Duality in Robust Utility Maximization with Unbounded Claim via a Robust Extension of Rockafellar's Theorem," Papers 1101.2968, arXiv.org.
  2. Alexander Schied & Ching-Tang Wu, 2005. "Duality theory for optimal investments under model uncertainty," SFB 649 Discussion Papers SFB649DP2005-025, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany, revised Sep 2005.
  3. Schied Alexander & Wu Ching-Tang, 2005. "Duality theory for optimal investments under model uncertainty," Statistics & Risk Modeling, De Gruyter, vol. 23(3/2005), pages 199-217, March.
  4. Sara Biagini & Marco Frittelli, 2007. "The supermartingale property of the optimal wealth process for general semimartingales," Finance and Stochastics, Springer, vol. 11(2), pages 253-266, April.
  5. Alexander Schied, 2007. "Optimal investments for risk- and ambiguity-averse preferences: a duality approach," Finance and Stochastics, Springer, vol. 11(1), pages 107-129, January.
  6. Yuri M. Kabanov & Christophe Stricker, 2002. "On the optimal portfolio for the exponential utility maximization: remarks to the six-author paper," Mathematical Finance, Wiley Blackwell, vol. 12(2), pages 125-134.
  7. Thomas Goll & Ludger Rüschendorf, 2001. "Minimax and minimal distance martingale measures and their relationship to portfolio optimization," Finance and Stochastics, Springer, vol. 5(4), pages 557-581.
  8. Keita Owari, 2009. "A Note on Utility Maximization with Unbounded Random Endowment," Global COE Hi-Stat Discussion Paper Series gd09-091, Institute of Economic Research, Hitotsubashi University.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Keita Owari, 2013. "A Robust Version of Convex Integral Functionals," CARF F-Series CARF-F-319, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:arx:papers:1109.5512. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.