Advanced Search
MyIDEAS: Login to save this paper or follow this series

Chaos and the exchange rate

Contents:

Author Info

  • Daniela Federici

    (University of Rome)

  • Giancarlo Gandolfo

Abstract

The interest of economists in chaos theory started in the 1980s. The first to draw the attention of economists to chaos theory was, in fact, Brock (1986), who examined the quarterly US real GNP data 1947-1985 using the Grassberger-Procaccia correlation dimension and Lyapunov exponents. Subsequent studies generally found absence of evidence for chaos in macroeconomic variables (GNP, monetary aggregates) while the study of financial variables such as stock-market returns and exchange rates gave mixed evidence. Studies aimed at detecting chaos in economic variables can be roughly classified into two categories. On the one hand, there are studies that simply examine the data and apply various tests, such as the studies mentioned. These tests have been originally developed in the physics literature and typically require several thousand observations. Apart from this data problem, such an approach is not very satisfactory from our point of view, which aims at finding the dynamic model underlying the data. On the other hand, structural models are built and analysed. This analysis can in principle be carried out in several ways: a) theoretically, namely showing that plausible economic assumptions give rise to dynamic structures having one of the mathematical forms known to give rise to chaotic motion; b) empirically, namely building a theoretical model and then b1) giving plausible values to the parameters, simulating the model, and testing the resulting data series for chaos; or b2) estimating the parameters econometrically, and then proceeding as in b1. Existing chaotic exchange rate models (De Grauwe and Versanten, 1990; Reszat, 1992; De Grauwe and Embrechts, 1992, 1993a,b; De Grauwe, Dewachter, Embrechts, 1993; Ellis, 1994; Szpiro, 1994; Da Silva, 1997) follow the structural approach: they are structural models built in discrete time (difference equations). From the theoretical point of view, these models show that with orthodox assumptions (PPP, interest parity, etc.) and introducing economically plausible nonlinearities in the dynamic equations, it is possible to obtain a dynamic system capable of giving rise to chaotic motion. However, none of these models is estimated, and the conclusions are based on simulations: the empirical validity of these models is not tested. Hence they can all be classified in category b1. In this paper, a continuous time exchange rate model is built as a nonlinear set of three differential equations and its theoretical properties (steady state, stability. etc.) are analysed. The model is then econometrically estimated in continuous time with Italian data and examined for the possible presence of chaotic motion. So far as we know, this is the first (tentative) study in category b2. However, this is not the main motivation of this paper. From our point of view it is important to show that the continuous time estimation of systems of nonlinear differential equations is a very powerful tool in the hands of the profession to tackle dynamic nonlinear problems.

Download Info

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below under "Related research" whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.

Bibliographic Info

Paper provided by Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance in its series CeNDEF Workshop Papers, January 2001 with number 4A.1.

as in new window
Length:
Date of creation: 04 Jan 2001
Date of revision:
Handle: RePEc:ams:cdws01:4a.1

Contact details of provider:
Postal: Dept. of Economics and Econometrics, Universiteit van Amsterdam, Roetersstraat 11, NL - 1018 WB Amsterdam, The Netherlands
Phone: + 31 20 525 52 58
Fax: + 31 20 525 52 83
Email:
Web page: http://www.fee.uva.nl/cendef/
More information through EDIRC

Related research

Keywords:

Other versions of this item:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Szpiro, George G., 1994. "Exchange rate speculation and chaos inducing intervention," Journal of Economic Behavior & Organization, Elsevier, vol. 24(3), pages 363-368, August.
  2. Paul Grauwe & Hans Dewachter, 1993. "A chaotic model of the exchange rate: The role of fundamentalists and chartists," Open Economies Review, Springer, vol. 4(4), pages 351-379, December.
  3. De Grauwe, Paul & Dewachter, Hans, 1990. "A Chaotic Monetary Model of the Exchange Rate," CEPR Discussion Papers 466, C.E.P.R. Discussion Papers.
  4. Scheinkman, Jose A & LeBaron, Blake, 1989. "Nonlinear Dynamics and Stock Returns," The Journal of Business, University of Chicago Press, vol. 62(3), pages 311-37, July.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Daniela Federici & Giancarlo Gandolfo, 2011. "The Euro/Dollar Exchange Rate: Chaotic or Non-Chaotic?," CESifo Working Paper Series 3420, CESifo Group Munich.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:ams:cdws01:4a.1. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.