IDEAS home Printed from https://ideas.repec.org/p/aiz/louvar/2019053.html
   My bibliography  Save this paper

Sentiment-Induced Bubbles in the Cryptocurrency Market

Author

Listed:
  • Chen, Cathy Yi-Hsuan
  • Hafner, Christian

Abstract

Cryptocurrencies lack clear measures of fundamental values and are often associated with speculative bubbles. This paper introduces a new way of testing for speculative bubbles based on StockTwits sentiment, which is used as the transition variable in a smooth transition autoregression. The model allows for conditional heteroskedasticity and fat tails of the conditional distribution of the error term, and volatility may depend on the constructed sentiment index. We apply the model to the CRIX index, for which several bubble periods are identified. The detected locally explosive price dynamics, given the specified bubble regime controlled by a smooth transition function, are more akin to the notion of speculative bubble that is driven by exuberant sentiment. Furthermore, we find that volatility increases as the sentiment index decreases, which is analogous to the commonly called leverage effect.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Chen, Cathy Yi-Hsuan & Hafner, Christian, 2019. "Sentiment-Induced Bubbles in the Cryptocurrency Market," LIDAM Reprints ISBA 2019053, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  • Handle: RePEc:aiz:louvar:2019053
    Note: In : Journal of Risk and Financial Management, vol. 12, no. 2, p. 1-12 (2019)
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fry, John & Cheah, Eng-Tuck, 2016. "Negative bubbles and shocks in cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 343-352.
    2. Trimborn, Simon & Härdle, Wolfgang Karl, 2018. "CRIX an Index for cryptocurrencies," Journal of Empirical Finance, Elsevier, vol. 49(C), pages 107-122.
    3. De Long, J Bradford, et al, 1990. "Positive Feedback Investment Strategies and Destabilizing Rational Speculation," Journal of Finance, American Finance Association, vol. 45(2), pages 379-395, June.
    4. Dick van Dijk & Timo Terasvirta & Philip Hans Franses, 2002. "Smooth Transition Autoregressive Models — A Survey Of Recent Developments," Econometric Reviews, Taylor & Francis Journals, vol. 21(1), pages 1-47.
    5. Christian M Hafner, 2020. "Testing for Bubbles in Cryptocurrencies with Time-Varying Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 18(2), pages 233-249.
    6. Peter C. B. Phillips & Yangru Wu & Jun Yu, 2011. "EXPLOSIVE BEHAVIOR IN THE 1990s NASDAQ: WHEN DID EXUBERANCE ESCALATE ASSET VALUES?," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 52(1), pages 201-226, February.
    7. Alasdair Brown & Fuyu Yang, 2017. "The Role of Speculative Trade in Market Efficiency: Evidence from a Betting Exchange," Review of Finance, European Finance Association, vol. 21(2), pages 583-603.
    8. Peter C. B. Phillips & Shuping Shi & Jun Yu, 2015. "Testing For Multiple Bubbles: Historical Episodes Of Exuberance And Collapse In The S&P 500," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56, pages 1043-1078, November.
    9. Nasekin, Sergey & Chen, Cathy Yi-Hsuan, 2018. "Deep learning-based cryptocurrency sentiment construction," IRTG 1792 Discussion Papers 2018-066, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    10. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    11. Creal, Drew & Koopman, Siem Jan & Lucas, André, 2011. "A Dynamic Multivariate Heavy-Tailed Model for Time-Varying Volatilities and Correlations," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(4), pages 552-563.
    12. Glosten, Lawrence R. & Milgrom, Paul R., 1985. "Bid, ask and transaction prices in a specialist market with heterogeneously informed traders," Journal of Financial Economics, Elsevier, vol. 14(1), pages 71-100, March.
    13. Christopher N. Avery & Judith A. Chevalier & Richard J. Zeckhauser, 2016. "The "CAPS" Prediction System and Stock Market Returns," Review of Finance, European Finance Association, vol. 20(4), pages 1363-1381.
    14. Christie, Andrew A., 1982. "The stochastic behavior of common stock variances : Value, leverage and interest rate effects," Journal of Financial Economics, Elsevier, vol. 10(4), pages 407-432, December.
    15. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107630024, January.
    16. Corbet, Shaen & Lucey, Brian & Yarovaya, Larisa, 2018. "Datestamping the Bitcoin and Ethereum bubbles," Finance Research Letters, Elsevier, vol. 26(C), pages 81-88.
    17. Christian Conrad & Anessa Custovic & Eric Ghysels, 2018. "Long- and Short-Term Cryptocurrency Volatility Components: A GARCH-MIDAS Analysis," JRFM, MDPI, vol. 11(2), pages 1-12, May.
    18. Efthymios G. Pavlidis & Ivan Paya & David A. Peel, 2018. "Using Market Expectations to Test for Speculative Bubbles in the Crude Oil Market," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(5), pages 833-856, August.
    19. Cheah, Eng-Tuck & Fry, John, 2015. "Speculative bubbles in Bitcoin markets? An empirical investigation into the fundamental value of Bitcoin," Economics Letters, Elsevier, vol. 130(C), pages 32-36.
    20. Adrian (Wai-Kong) Cheung & Eduardo Roca & Jen-Je Su, 2015. "Crypto-currency bubbles: an application of the Phillips-Shi-Yu (2013) methodology on Mt. Gox bitcoin prices," Applied Economics, Taylor & Francis Journals, vol. 47(23), pages 2348-2358, May.
    21. Frode Kjærland & Aras Khazal & Erlend A. Krogstad & Frans B. G. Nordstrøm & Are Oust, 2018. "An Analysis of Bitcoin’s Price Dynamics," JRFM, MDPI, vol. 11(4), pages 1-18, October.
    22. Kim, Soon-Ho & Kim, Dongcheol, 2014. "Investor sentiment from internet message postings and the predictability of stock returns," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PB), pages 708-729.
    23. Efthymios G. Pavlidis & Ivan Paya & David A. Peel, 2017. "Testing For Speculative Bubbles Using Spot And Forward Prices," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 58(4), pages 1191-1226, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bouteska, Ahmed & Mefteh-Wali, Salma & Dang, Trung, 2022. "Predictive power of investor sentiment for Bitcoin returns: Evidence from COVID-19 pandemic," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    2. Kumar, Anoop S & Padakandla, Steven Raj, 2023. "Do NFTs act as a good hedge and safe haven against Cryptocurrency fluctuations?," Finance Research Letters, Elsevier, vol. 56(C).
    3. Mingzhe Wei & Georgios Sermpinis & Charalampos Stasinakis, 2023. "Forecasting and trading Bitcoin with machine learning techniques and a hybrid volatility/sentiment leverage," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 852-871, July.
    4. Christian M. Hafner & Sabrine Majeri, 2022. "Analysis of cryptocurrency connectedness based on network to transaction volume ratios," Digital Finance, Springer, vol. 4(2), pages 187-216, September.
    5. Ramit Sawhney & Shivam Agarwal & Vivek Mittal & Paolo Rosso & Vikram Nanda & Sudheer Chava, 2022. "Cryptocurrency Bubble Detection: A New Stock Market Dataset, Financial Task & Hyperbolic Models," Papers 2206.06320, arXiv.org.
    6. Kensuke Ito & Kyohei Shibano & Gento Mogi, 2022. "Bubble Prediction of Non-Fungible Tokens (NFTs): An Empirical Investigation," Papers 2203.12587, arXiv.org, revised Jun 2022.
    7. Konstantin Gorgen & Jonas Meirer & Melanie Schienle, 2022. "Predicting Value at Risk for Cryptocurrencies With Generalized Random Forests," Papers 2203.08224, arXiv.org, revised Jun 2022.
    8. Caferra, Rocco, 2022. "Sentiment spillover and price dynamics: Information flow in the cryptocurrency and stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    9. Michael Demmler & Amilcar Orlian Fernández Domínguez, 2021. "Bitcoin and the South Sea Company: A comparative analysis," Revista Finanzas y Politica Economica, Universidad Católica de Colombia, vol. 13(1), pages 197-224, March.
    10. Christian M. Hafner, 2020. "Alternative Assets and Cryptocurrencies," JRFM, MDPI, vol. 13(1), pages 1-3, January.
    11. Luca Mungo & Silvia Bartolucci & Laura Alessandretti, 2023. "Cryptocurrency co-investment network: token returns reflect investment patterns," Papers 2301.02027, arXiv.org, revised Jan 2023.
    12. Shigeyuki Hamori, 2020. "Recent Advancements in Section “Financial Technology and Innovation”," JRFM, MDPI, vol. 13(12), pages 1-2, December.
    13. Ştefan Cristian Gherghina & Liliana Nicoleta Simionescu, 2023. "Exploring the asymmetric effect of COVID-19 pandemic news on the cryptocurrency market: evidence from nonlinear autoregressive distributed lag approach and frequency domain causality," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-58, December.
    14. Silvia Bartolucci & Fabio Caccioli & Pierpaolo Vivo, 2019. "A percolation model for the emergence of the Bitcoin Lightning Network," Papers 1912.03556, arXiv.org.
    15. Ozkan Haykir & Ibrahim Yagli, 2022. "Speculative bubbles and herding in cryptocurrencies," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-33, December.
    16. Bowden, James & Gemayel, Roland, 2022. "Sentiment and trading decisions in an ambiguous environment: A study on cryptocurrency traders," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    17. Bourghelle, David & Jawadi, Fredj & Rozin, Philippe, 2022. "Do collective emotions drive bitcoin volatility? A triple regime-switching vector approach," Journal of Economic Behavior & Organization, Elsevier, vol. 196(C), pages 294-306.
    18. Kyriazis, Nikolaos & Papadamou, Stephanos & Corbet, Shaen, 2020. "A systematic review of the bubble dynamics of cryptocurrency prices," Research in International Business and Finance, Elsevier, vol. 54(C).
    19. Burggraf, Tobias & Rudolf, Markus, 2021. "Cryptocurrencies and the low volatility anomaly," Finance Research Letters, Elsevier, vol. 40(C).
    20. Chen, Cathy Yi-hsuan & Okhrin, Yarema & Wang, Tengyao, 2022. "Monitoring network changes in social media," LSE Research Online Documents on Economics 113742, London School of Economics and Political Science, LSE Library.
    21. Thomas E. Koker & Dimitrios Koutmos, 2020. "Cryptocurrency Trading Using Machine Learning," JRFM, MDPI, vol. 13(8), pages 1-7, August.
    22. Marco Ortu & Nicola Uras & Claudio Conversano & Giuseppe Destefanis & Silvia Bartolucci, 2021. "On Technical Trading and Social Media Indicators in Cryptocurrencies' Price Classification Through Deep Learning," Papers 2102.08189, arXiv.org, revised Feb 2021.
    23. Melisa Ozdamar & Levent Akdeniz & Ahmet Sensoy, 2021. "Lottery-like preferences and the MAX effect in the cryptocurrency market," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-27, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian M. Hafner & Sabrine Majeri, 2022. "Analysis of cryptocurrency connectedness based on network to transaction volume ratios," Digital Finance, Springer, vol. 4(2), pages 187-216, September.
    2. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
    3. Kyriazis, Nikolaos & Papadamou, Stephanos & Corbet, Shaen, 2020. "A systematic review of the bubble dynamics of cryptocurrency prices," Research in International Business and Finance, Elsevier, vol. 54(C).
    4. Andrada-Félix, Julián & Fernandez-Perez, Adrian & Sosvilla-Rivero, Simón, 2020. "Distant or close cousins: Connectedness between cryptocurrencies and traditional currencies volatilities," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 67(C).
    5. Skrobotov Anton, 2023. "Testing for explosive bubbles: a review," Dependence Modeling, De Gruyter, vol. 11(1), pages 1-26, January.
    6. Corbet, Shaen & Lucey, Brian & Urquhart, Andrew & Yarovaya, Larisa, 2019. "Cryptocurrencies as a financial asset: A systematic analysis," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 182-199.
    7. Chen, Cathy Yi-Hsuan & Després, Roméo & Guo, Li & Renault, Thomas, 2019. "What makes cryptocurrencies special? Investor sentiment and return predictability during the bubble," IRTG 1792 Discussion Papers 2019-016, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    8. Enoksen, F.A. & Landsnes, Ch.J. & Lučivjanská, K. & Molnár, P., 2020. "Understanding risk of bubbles in cryptocurrencies," Journal of Economic Behavior & Organization, Elsevier, vol. 176(C), pages 129-144.
    9. Cristina Chinazzo & Vahidin Jeleskovic, 2024. "Forecasting Bitcoin Volatility: A Comparative Analysis of Volatility Approaches," Papers 2401.02049, arXiv.org.
    10. Bellón, Carlos & Figuerola-Ferretti, Isabel, 2022. "Bubbles in Ethereum," Finance Research Letters, Elsevier, vol. 46(PB).
    11. Christian M. Hafner, 2020. "Alternative Assets and Cryptocurrencies," JRFM, MDPI, vol. 13(1), pages 1-3, January.
    12. De Pace, Pierangelo & Rao, Jayant, 2023. "Comovement and instability in cryptocurrency markets," International Review of Economics & Finance, Elsevier, vol. 83(C), pages 173-200.
    13. Yang Hu, 2023. "A review of Phillips‐type right‐tailed unit root bubble detection tests," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 141-158, February.
    14. Christie Smith & Aaron Kumar, 2018. "Crypto‐Currencies – An Introduction To Not‐So‐Funny Moneys," Journal of Economic Surveys, Wiley Blackwell, vol. 32(5), pages 1531-1559, December.
    15. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    16. Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & David Martinez-Rego & Fan Wu & Lingbo Li, 2022. "Cryptocurrency trading: a comprehensive survey," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-59, December.
    17. Ozkan Haykir & Ibrahim Yagli, 2022. "Speculative bubbles and herding in cryptocurrencies," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-33, December.
    18. Caravello, Tomas E. & Psaradakis, Zacharias & Sola, Martin, 2023. "Rational bubbles: Too many to be true?," Journal of Economic Dynamics and Control, Elsevier, vol. 151(C).
    19. Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
    20. Katsiampa, Paraskevi, 2019. "An empirical investigation of volatility dynamics in the cryptocurrency market," Research in International Business and Finance, Elsevier, vol. 50(C), pages 322-335.

    More about this item

    JEL classification:

    • C - Mathematical and Quantitative Methods
    • E - Macroeconomics and Monetary Economics
    • F2 - International Economics - - International Factor Movements and International Business
    • F3 - International Economics - - International Finance
    • G - Financial Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aiz:louvar:2019053. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nadja Peiffer (email available below). General contact details of provider: https://edirc.repec.org/data/isuclbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.