IDEAS home Printed from https://ideas.repec.org/p/ags/uvicwp/18162.html
   My bibliography  Save this paper

Viability Of Carbon Offset Generating Projects In Boreal Ontario

Author

Listed:
  • Biggs, Jeffrey
  • Laaksonen-Craig, Susanna

Abstract

Carbon offsets generated under the Kyoto Protocol should be included in the management options that resource managers are considering. This paper investigates investments in afforestation for the generation of KP compliant carbon offsets in the Timmins Management Unit, concentrating on the availability of quality carbon budget models, domestic carbon market concerns and the presence of an enabling environment. A modelling exercise is undertaken using GORCAM-WC1, with ownership, leading species, investment horizon, site productivity and carbon price as variables. Under current institutional frameworks, afforestation projects with the purpose of generating carbon offsets in the TMU are not viable investments for the first commitment period, though such projects will be profitable under certain conditions if constraints are removed and investment is long term.

Suggested Citation

  • Biggs, Jeffrey & Laaksonen-Craig, Susanna, 2004. "Viability Of Carbon Offset Generating Projects In Boreal Ontario," Working Papers 18162, University of Victoria, Resource Economics and Policy.
  • Handle: RePEc:ags:uvicwp:18162
    DOI: 10.22004/ag.econ.18162
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/18162/files/wp040010.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.18162?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Martial Bernoux & Vincent Eschenbrenner & Carlos C. Cerri & Jerry M. Melillo & Christian Feller, 2002. "LULUCF-based CDM: too much ado for...a small carbon market," Climate Policy, Taylor & Francis Journals, vol. 2(4), pages 379-385, December.
    2. Richard A. Betts, 2000. "Offset of the potential carbon sink from boreal forestation by decreases in surface albedo," Nature, Nature, vol. 408(6809), pages 187-190, November.
    3. Krcmar, Emina & Stennes, Brad & Cornelis van Kooten, G. & Vertinsky, Ilan, 2001. "Carbon sequestration and land management under uncertainty," European Journal of Operational Research, Elsevier, vol. 135(3), pages 616-629, December.
    4. Varma, Adarsh, 2003. "UK's climate change levy: cost effectiveness, competitiveness and environmental impacts," Energy Policy, Elsevier, vol. 31(1), pages 51-61, January.
    5. Atle C. Christiansen & J�rgen Wettestad, 2003. "The EU as a frontrunner on greenhouse gas emissions trading: how did it happen and will the EU succeed?," Climate Policy, Taylor & Francis Journals, vol. 3(1), pages 3-18, March.
    6. Gunter, W. D. & Wong, S. & Cheel, D. B. & Sjostrom, G., 1998. "Large CO2 Sinks: Their role in the mitigation of greenhouse gases from an international, national (Canadian) and provincial (Alberta) perspective," Applied Energy, Elsevier, vol. 61(4), pages 209-227, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. G. Cornelis van Kooten & Grant Hauer, 2001. "Global Climate Change: Canadian Policy and the Role of Terrestrial Ecosystems," Canadian Public Policy, University of Toronto Press, vol. 27(3), pages 267-278, September.
    2. Ningning Zhao & Tianfu Xu & Kairan Wang & Hailong Tian & Fugang Wang, 2018. "Experimental study of physical‐chemical properties modification of coal after CO2 sequestration in deep unmineable coal seams," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(3), pages 510-528, June.
    3. Nigel Martin & John Rice, 2010. "Analysing emission intensive firms as regulatory stakeholders: a role for adaptable business strategy," Business Strategy and the Environment, Wiley Blackwell, vol. 19(1), pages 64-75, January.
    4. You, Junyu & Ampomah, William & Sun, Qian, 2020. "Co-optimizing water-alternating-carbon dioxide injection projects using a machine learning assisted computational framework," Applied Energy, Elsevier, vol. 279(C).
    5. Ann Hansford & John Hasseldine & Thérèse Woodward, 2004. "The UK climate change levy: good intentions but potentially damaging to business," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 11(4), pages 196-210, December.
    6. Zhan Chen & Yihao Wang & Ruisi Chen & Xiuya Ni & Jixin Cao, 2022. "Effects of Forest Type on Nutrient Fluxes in Throughfall, Stemflow, and Litter Leachate within Acid-Polluted Locations in Southwest China," IJERPH, MDPI, vol. 19(5), pages 1-15, February.
    7. H. Damon Matthews & Kirsten Zickfeld & Alexander Koch & Amy Luers, 2023. "Accounting for the climate benefit of temporary carbon storage in nature," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Cui, Guodong & Zhang, Liang & Ren, Bo & Enechukwu, Chioma & Liu, Yanmin & Ren, Shaoran, 2016. "Geothermal exploitation from depleted high temperature gas reservoirs via recycling supercritical CO2: Heat mining rate and salt precipitation effects," Applied Energy, Elsevier, vol. 183(C), pages 837-852.
    9. Anatoly Shvidenko & Mike Apps, 2006. "The International Boreal Forest Research Association: Understanding Boreal Forests and Forestry in a Changing World," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(1), pages 5-32, January.
    10. Robert Hamwey, 2007. "Active Amplification of the Terrestrial Albedo to Mitigate Climate Change: An Exploratory Study," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(4), pages 419-439, May.
    11. Jean-Baptiste, Philippe & Ducroux, Rene, 2003. "Energy policy and climate change," Energy Policy, Elsevier, vol. 31(2), pages 155-166, January.
    12. Martin Larsson, 2017. "EU Emissions Trading: Policy-Induced Innovation, or Business as Usual? Findings from Company Case Studies in the Republic of Croatia," Working Papers 1705, The Institute of Economics, Zagreb.
    13. Brazhnik, Ksenia & Shugart, H.H., 2016. "SIBBORK: A new spatially-explicit gap model for boreal forest," Ecological Modelling, Elsevier, vol. 320(C), pages 182-196.
    14. Jung, Martina, 2003. "The Role of Forestry Sinks in the CDM - Analysing the Effects of Policy Decisions on the Carbon Market," Discussion Paper Series 26293, Hamburg Institute of International Economics.
    15. Shaikh, Sabina L. & Sun, Lili & van Kooten, G. Cornelis, 2005. "Are Agricultural Values a Reliable Guide in Determining Landowners’ Decisions to Create Carbon Forest Sinks?," Working Papers 37017, University of Victoria, Resource Economics and Policy.
    16. Jianfeng Guo & Bin Su & Guang Yang & Lianyong Feng & Yinpeng Liu & Fu Gu, 2018. "How Do Verified Emissions Announcements Affect the Comoves between Trading Behaviors and Carbon Prices? Evidence from EU ETS," Sustainability, MDPI, vol. 10(9), pages 1-17, September.
    17. McKenney, Daniel W. & Yemshanov, Denys & Fox, Glenn & Ramlal, Elizabeth, 2004. "Cost estimates for carbon sequestration from fast growing poplar plantations in Canada," Forest Policy and Economics, Elsevier, vol. 6(3-4), pages 345-358, June.
    18. Raphael Portmann & Urs Beyerle & Edouard Davin & Erich M. Fischer & Steven Hertog & Sebastian Schemm, 2022. "Global forestation and deforestation affect remote climate via adjusted atmosphere and ocean circulation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    19. He, Hongxing & Jansson, Per-Erik & Svensson, Magnus & Meyer, Astrid & Klemedtsson, Leif & Kasimir, Åsa, 2016. "Factors controlling Nitrous Oxide emission from a spruce forest ecosystem on drained organic soil, derived using the CoupModel," Ecological Modelling, Elsevier, vol. 321(C), pages 46-63.
    20. Annie Levasseur & Pascal Lesage & Manuele Margni & Miguel Brandão & Réjean Samson, 2012. "Assessing temporary carbon sequestration and storage projects through land use, land-use change and forestry: comparison of dynamic life cycle assessment with ton-year approaches," Climatic Change, Springer, vol. 115(3), pages 759-776, December.

    More about this item

    Keywords

    Resource /Energy Economics and Policy;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:uvicwp:18162. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: http://web.uvic.ca/econ/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.