IDEAS home Printed from https://ideas.repec.org/p/ags/uqsers/162568.html
   My bibliography  Save this paper

The Financial Market Consequences of Growing Awareness: The Case of Implied Volatiltiy Skew

Author

Listed:
  • Siddiqi, Hammad

Abstract

The belief that the essence of the Black Scholes model is correct implies that one is unaware that a delta-hedged portfolio is risky, while believing that the proposition, a delta-hedged portfolio is risk-free, is true. Such partial awareness is equivalent to restricted awareness in which one is unaware of the states in which a delta-hedged portfolio is risky. In the continuous limit, two types of restricted awareness are distinguished. 1) Strongly restricted awareness in which one is unaware of the type of the true stochastic process. 2) Weakly restricted awareness, in which one is aware of the type of the true stochastic process, but is unaware of the true parameter values. We apply the generalized principle of no-arbitrage (analogy making) to derive alternatives to the Black Scholes model in each case. If the Black Scholes model represents strongly restricted awareness, then the alternative formula is a generalization of Merton’s jump diffusion formula. If the Black Scholes formula represents weakly restricted awareness, then the alternative formula, first derived in Siddiqi(2013), is a generalization of the Black Scholes formula. Both alternatives generate implied volatility skew. Hence, the sudden appearance of the skew after the crash of 1987 can be understood as the consequence of growing awareness, as investors realized that a delta-hedged portfolio is risky after suffering huge losses in their portfolio-insurance delta-hedges. The different implications of strongly restricted awareness vs. weakly restricted awareness for option pricing are discussed.

Suggested Citation

  • Siddiqi, Hammad, 2014. "The Financial Market Consequences of Growing Awareness: The Case of Implied Volatiltiy Skew," Risk and Sustainable Management Group Working Papers 162568, University of Queensland, School of Economics.
  • Handle: RePEc:ags:uqsers:162568
    DOI: 10.22004/ag.econ.162568
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/162568/files/WPF14_1.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.162568?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Simon Grant & John Quiggin, 2013. "Inductive reasoning about unawareness," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 54(3), pages 717-755, November.
    2. Jackwerth, Jens Carsten, 2000. "Recovering Risk Aversion from Option Prices and Realized Returns," The Review of Financial Studies, Society for Financial Studies, vol. 13(2), pages 433-451.
    3. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    4. Amin, Kaushik I, 1993. "Jump Diffusion Option Valuation in Discrete Time," Journal of Finance, American Finance Association, vol. 48(5), pages 1833-1863, December.
    5. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    6. Siddiqi, Hammad, 2012. "The relevance of thinking-by-analogy for investors’ willingness-to-pay: An experimental study," Journal of Economic Psychology, Elsevier, vol. 33(1), pages 19-29.
    7. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    8. Siddiqi, Hammad, 2013. "Mental Accounting: A Closed-Form Alternative to the Black Scholes Model," MPRA Paper 50759, University Library of Munich, Germany.
    9. Rubinstein, Mark, 1994. "Implied Binomial Trees," Journal of Finance, American Finance Association, vol. 49(3), pages 771-818, July.
    10. Siddiqi, Hammad, 2009. "Does Coarse Thinking Matter for Option Pricing? Evidence from an Experiment," MPRA Paper 13515, University Library of Munich, Germany.
    11. Mark Rubinstein., 1994. "Implied Binomial Trees," Research Program in Finance Working Papers RPF-232, University of California at Berkeley.
    12. Halpern, Joseph Y. & Rego, Leandro Chaves, 2008. "Interactive unawareness revisited," Games and Economic Behavior, Elsevier, vol. 62(1), pages 232-262, January.
    13. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    14. Jing Li, 2008. "A Note on Unawareness and Zero Probability," PIER Working Paper Archive 08-022, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Constantinides, George M. & Jackwerth, Jens Carsten & Perrakis, Stylianos, 2005. "Option pricing: Real and risk-neutral distributions," CoFE Discussion Papers 05/06, University of Konstanz, Center of Finance and Econometrics (CoFE).
    2. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    3. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    4. Guidolin, Massimo & Timmermann, Allan, 2003. "Option prices under Bayesian learning: implied volatility dynamics and predictive densities," Journal of Economic Dynamics and Control, Elsevier, vol. 27(5), pages 717-769, March.
    5. Yuji Yamada & James Primbs, 2004. "Properties of Multinomial Lattices with Cumulants for Option Pricing and Hedging," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 11(3), pages 335-365, September.
    6. Lishang Jiang & Qihong Chen & Lijun Wang & Jin Zhang, 2003. "A new well-posed algorithm to recover implied local volatility," Quantitative Finance, Taylor & Francis Journals, vol. 3(6), pages 451-457.
    7. U Hou Lok & Yuh‐Dauh Lyuu, 2020. "Efficient trinomial trees for local‐volatility models in pricing double‐barrier options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(4), pages 556-574, April.
    8. C. Mancini, 2002. "The European options hedge perfectly in a Poisson-Gaussian stock market model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 9(2), pages 87-102.
    9. Jackwerth, Jens Carsten & Rubinstein, Mark, 2003. "Recovering Probabilities and Risk Aversion from Option Prices and Realized Returns," MPRA Paper 11638, University Library of Munich, Germany, revised 2004.
    10. Ait-Sahalia, Yacine & Wang, Yubo & Yared, Francis, 2001. "Do option markets correctly price the probabilities of movement of the underlying asset?," Journal of Econometrics, Elsevier, vol. 102(1), pages 67-110, May.
    11. Davide Lauria & W. Brent Lindquist & Svetlozar T. Rachev & Yuan Hu, 2023. "Unifying Market Microstructure and Dynamic Asset Pricing," Papers 2304.02356, arXiv.org, revised Feb 2024.
    12. Stylianos Perrakis, 2022. "From innovation to obfuscation: continuous time finance fifty years later," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 36(3), pages 369-401, September.
    13. Mondher Bellalah, 2009. "Derivatives, Risk Management & Value," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7175, January.
    14. Siddiqi, Hammad, 2014. "Anchoring Heuristic in Option Prices," MPRA Paper 66018, University Library of Munich, Germany, revised 15 Jul 2015.
    15. Siddiqi, Hammad, 2014. "Analogy Making and the Structure of Implied Volatility Skew," MPRA Paper 60921, University Library of Munich, Germany.
    16. Carl Chiarella & Xue-Zhong He & Christina Sklibosios Nikitopoulos, 2015. "Derivative Security Pricing," Dynamic Modeling and Econometrics in Economics and Finance, Springer, edition 127, number 978-3-662-45906-5, July-Dece.
    17. Vipul Kumar Singh, 2016. "Pricing and hedging competitiveness of the tree option pricing models: Evidence from India," Journal of Asset Management, Palgrave Macmillan, vol. 17(6), pages 453-475, October.
    18. Marian Micu, 2005. "Extracting expectations from currency option prices: a comparison of methods," Computing in Economics and Finance 2005 226, Society for Computational Economics.
    19. Omid M. Ardakani, 2022. "Option pricing with maximum entropy densities: The inclusion of higher‐order moments," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(10), pages 1821-1836, October.
    20. U Hou Lok & Yuh-Dauh Lyuu, 2022. "A Valid and Efficient Trinomial Tree for General Local-Volatility Models," Computational Economics, Springer;Society for Computational Economics, vol. 60(3), pages 817-832, October.

    More about this item

    Keywords

    Financial Economics;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:uqsers:162568. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/decuqau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.