IDEAS home Printed from https://ideas.repec.org/p/ags/pugtwp/332912.html
   My bibliography  Save this paper

Modelling the circular economy: designing a global baseline of economic activity and material flows

Author

Listed:
  • Bibas, Ruben
  • Chateau, Jean
  • Dellink, Rob
  • McCarthy, Andrew

Abstract

This paper aims at describing the process to design a business as usual baseline scenario, and deriving the environmental consequences in terms of energy, emissions and material use. It starts by describing current demographic trends and corresponding Baseline projections. It then outlines economic trends and projections, including economic growth (GDP, consumption, sectoral composition) and its drivers, such as labour and capital. These trends are based on a gradual conditional convergence of income levels among countries. In its final section it explores two factors which directly link economic trends to environmental pressures: energy use (energy mix such as fossil fuels, renewables and nuclear) and land use (in particular agricultural land). Two original results are expected from this paper compared to the previous ones describing the baseline creation methodology. First, the methodological results consists in developing a procedure to represent the circular economy in a global multi-region CGE model and link material use to economic output. The second output is a material-explicit baseline that goes beyond the current economic projections in which at best energy is described. From these results, the quantification of material use and flows in the projected baseline indicates the critical materials to monitor for supply security as well as greenhouse gas and outdoor air pollutant emissions. Material flows and the relative decoupling from economic activity can be calibrated to historical trends and information in the literature. This allows projections of resource efficiency, growth employment and trade. The model extension and baseline developed in this paper constitute a solid starting point to assess the impact of public policies promoting the transition to a circular economy. The effects of these policies on growth, competitiveness, and employment constitute the cornerstone of the rhetoric advocating for them and can be tested in the developed framework.

Suggested Citation

  • Bibas, Ruben & Chateau, Jean & Dellink, Rob & McCarthy, Andrew, 2017. "Modelling the circular economy: designing a global baseline of economic activity and material flows," Conference papers 332912, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
  • Handle: RePEc:ags:pugtwp:332912
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/332912/files/8491.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arnold Tukker & Arjan de Koning & Richard Wood & Troy Hawkins & Stephan Lutter & Jose Acosta & Jose M. Rueda Cantuche & Maaike Bouwmeester & Jan Oosterhaven & Thomas Drosdowski & Jeroen Kuenen, 2013. "Exiopol - Development And Illustrative Analyses Of A Detailed Global Mr Ee Sut/Iot," Economic Systems Research, Taylor & Francis Journals, vol. 25(1), pages 50-70, March.
    2. John A. Mathews & Hao Tan, 2011. "Progress Toward a Circular Economy in China," Journal of Industrial Ecology, Yale University, vol. 15(3), pages 435-457, June.
    3. Stefan Giljum & Martin Bruckner & Aldo Martinez, 2015. "Material Footprint Assessment in a Global Input-Output Framework," Journal of Industrial Ecology, Yale University, vol. 19(5), pages 792-804, October.
    4. Pfaff, Matthias & Sartorius, Christian, 2015. "Economy-wide rebound effects for non-energetic raw materials," Ecological Economics, Elsevier, vol. 118(C), pages 132-139.
    5. Jean Château & Cuauhtemoc Rebolledo & Rob Dellink, 2011. "An Economic Projection to 2050: The OECD "ENV-Linkages" Model Baseline," OECD Environment Working Papers 41, OECD Publishing.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kucukvar, Murat & Haider, Muhammad Ali & Onat, Nuri Cihat, 2017. "Exploring the material footprints of national electricity production scenarios until 2050: The case for Turkey and UK," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 251-263.
    2. Jacopo Zotti & Andrea Bigano, 2019. "Write circular economy, read economy’s circularity. How to avoid going in circles," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 36(2), pages 629-652, July.
    3. Pothen, Frank & Tovar Reaños, Miguel Angel, 2018. "The Distribution of Material Footprints in Germany," Ecological Economics, Elsevier, vol. 153(C), pages 237-251.
    4. Matthias Pfaff & Rainer Walz, 2021. "Analysis of the development and structural drivers of raw‐material use in Germany," Journal of Industrial Ecology, Yale University, vol. 25(4), pages 1063-1075, August.
    5. Eisenmenger, Nina & Wiedenhofer, Dominik & Schaffartzik, Anke & Giljum, Stefan & Bruckner, Martin & Schandl, Heinz & Wiedmann, Thomas O. & Lenzen, Manfred & Tukker, Arnold & Koning, Arjan, 2016. "Consumption-based material flow indicators — Comparing six ways of calculating the Austrian raw material consumption providing six results," Ecological Economics, Elsevier, vol. 128(C), pages 177-186.
    6. Rodrigo Mesa-Arango & Badri Narayanan & Satish V. Ukkusuri, 2019. "The Impact of International Crises on Maritime Transportation Based Global Value Chains," Networks and Spatial Economics, Springer, vol. 19(2), pages 381-408, June.
    7. Lanzi, Elisa & Dellink, Rob & Chateau, Jean, 2018. "The sectoral and regional economic consequences of outdoor air pollution to 2060," Energy Economics, Elsevier, vol. 71(C), pages 89-113.
    8. Daniel Moran & Richard Wood, 2014. "Convergence Between The Eora, Wiod, Exiobase, And Openeu'S Consumption-Based Carbon Accounts," Economic Systems Research, Taylor & Francis Journals, vol. 26(3), pages 245-261, September.
    9. Tianqun Xu & Ping Gao & Qian Yu & Debin Fang, 2017. "An Improved Eco-Efficiency Analysis Framework Based on Slacks-Based Measure Method," Sustainability, MDPI, vol. 9(6), pages 1-21, June.
    10. Millar, Neal & McLaughlin, Eoin & Börger, Tobias, 2019. "The Circular Economy: Swings and Roundabouts?," Ecological Economics, Elsevier, vol. 158(C), pages 11-19.
    11. Yongke Yuan & Yitong Wang & Jialin Li & Mengwan Zhang, 2023. "Input-output Table and Input-output Model of Import and Export Internalization," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 13(6), pages 1-15.
    12. Muhammet Enis Bulak & Murat Kucukvar, 2022. "How ecoefficient is European food consumption? A frontier‐based multiregional input–output analysis," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(5), pages 817-832, October.
    13. Bruckner, Martin & Giljum, Stefan & Fischer, Günther & Tramberend, Sylvia & Börner, Jan, 2018. "The global cropland footprint of the non-food bioeconomy," Discussion Papers 271062, University of Bonn, Center for Development Research (ZEF).
    14. Eivind Lekve Bjelle & Johannes Többen & Konstantin Stadler & Thomas Kastner & Michaela C. Theurl & Karl-Heinz Erb & Kjartan-Steen Olsen & Kirsten S. Wiebe & Richard Wood, 2020. "Adding country resolution to EXIOBASE: impacts on land use embodied in trade," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 9(1), pages 1-25, December.
    15. Karl Steininger & Pablo Munoz & Jonas Karstensen & Glen Peters & Rita Strohmaier & Erick Velazquez, 2017. "Austria’s Consumption-Based Greenhouse Gas Emissions: Identifying sectoral sources and destinations," EcoMod2017 10472, EcoMod.
    16. Cahen-Fourot, Louison & Magalhães, Nelo, 2020. "Matter and regulation: socio-metabolic and accumulation regimes of French capitalism since 1948," Ecological Economic Papers 34, WU Vienna University of Economics and Business.
    17. Ziheng Niu & Jianliang Xiong & Xuesong Ding & Yao Wu, 2022. "Analysis of China’s Carbon Peak Achievement in 2025," Energies, MDPI, vol. 15(14), pages 1-18, July.
    18. Antonello Monsù Scolaro & Stefania De Medici, 2021. "Downcycling and Upcycling in Rehabilitation and Adaptive Reuse of Pre-Existing Buildings: Re-Designing Technological Performances in an Environmental Perspective," Energies, MDPI, vol. 14(21), pages 1-23, October.
    19. Jiang, Meihui & An, Haizhong & Guan, Qing & Sun, Xiaoqi, 2018. "Global embodied mineral flow between industrial sectors: A network perspective," Resources Policy, Elsevier, vol. 58(C), pages 192-201.
    20. Freire-González, Jaume, 2017. "Evidence of direct and indirect rebound effect in households in EU-27 countries," Energy Policy, Elsevier, vol. 102(C), pages 270-276.

    More about this item

    Keywords

    Research Methods/ Statistical Methods;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:pugtwp:332912. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/gtpurus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.