IDEAS home Printed from https://ideas.repec.org/p/ags/ubzefd/271062.html
   My bibliography  Save this paper

The global cropland footprint of the non-food bioeconomy

Author

Listed:
  • Bruckner, Martin
  • Giljum, Stefan
  • Fischer, Günther
  • Tramberend, Sylvia
  • Börner, Jan

Abstract

A rapidly growing share of global agricultural areas is devoted to the production of biomass for non-food purposes. The derived products include, for example, biofuels, textiles, detergents or cosmetics. Given the far-reaching global implications of an expanding non-food bioeconomy, an assessment of the bioeconomy’s resource use from a footprint perspective is urgently needed. We determine the global cropland footprint of non-food products with a hybrid land flow accounting model combining data from the Food and Agriculture Organization and the multi-regional input-output model EXIOBASE. The globally interlinked model covers all cropland areas used for the production of crop- and animal-based non-food commodities for the years from 1995 to 2010. We analyse global patterns of raw material producers, processers and consumers of bio-based non-food products, with a particular focus on the European Union. Results illustrate that the EU is a major processer and the number one consumer region of non-food cropland, despite being only the fifth largest producing region. Two thirds of the cropland required to satisfy EU non-food consumption are located in other world regions, giving rise to a significant dependency on imported products and to potential impacts on distant ecosystems. With almost 29% in 2010, oilseed production, used to produce, for example, biofuels, detergents and polymers, represents the dominant share in the EU’s non-food cropland footprint. There is also a significant contribution of more traditional non-food biomass uses such as fibre crops (for textiles) and animal hides and skins (for leather products). Our study emphasises the importance of comprehensively assessing the implications of the non-food bioeconomy expansion as envisaged in various policy strategies, such as the Bioeconomy Strategy of the European Commission.

Suggested Citation

  • Bruckner, Martin & Giljum, Stefan & Fischer, Günther & Tramberend, Sylvia & Börner, Jan, 2018. "The global cropland footprint of the non-food bioeconomy," Discussion Papers 271062, University of Bonn, Center for Development Research (ZEF).
  • Handle: RePEc:ags:ubzefd:271062
    DOI: 10.22004/ag.econ.271062
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/271062/files/DP_253.pdf
    Download Restriction: no

    File URL: https://ageconsearch.umn.edu/record/271062/files/DP_253.pdf?subformat=pdfa
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.271062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kastner, Thomas & Kastner, Michael & Nonhebel, Sanderine, 2011. "Tracing distant environmental impacts of agricultural products from a consumer perspective," Ecological Economics, Elsevier, vol. 70(6), pages 1032-1040, April.
    2. Deborah Lawrence & Karen Vandecar, 2015. "Effects of tropical deforestation on climate and agriculture," Nature Climate Change, Nature, vol. 5(1), pages 27-36, January.
    3. Godar, Javier & Persson, U. Martin & Tizado, E. Jorge & Meyfroidt, Patrick, 2015. "Towards more accurate and policy relevant footprint analyses: Tracing fine-scale socio-environmental impacts of production to consumption," Ecological Economics, Elsevier, vol. 112(C), pages 25-35.
    4. Klaus Deininger, 2013. "Global land investments in the bio-economy: evidence and policy implications," Agricultural Economics, International Association of Agricultural Economists, vol. 44(s1), pages 115-127, November.
    5. Arnold Tukker & Arjan de Koning & Richard Wood & Troy Hawkins & Stephan Lutter & Jose Acosta & Jose M. Rueda Cantuche & Maaike Bouwmeester & Jan Oosterhaven & Thomas Drosdowski & Jeroen Kuenen, 2013. "Exiopol - Development And Illustrative Analyses Of A Detailed Global Mr Ee Sut/Iot," Economic Systems Research, Taylor & Francis Journals, vol. 25(1), pages 50-70, March.
    6. Bruckner, Martin & Fischer, Günther & Tramberend, Sylvia & Giljum, Stefan, 2015. "Measuring telecouplings in the global land system: A review and comparative evaluation of land footprint accounting methods," Ecological Economics, Elsevier, vol. 114(C), pages 11-21.
    7. Leontief, Wassily, 1970. "Environmental Repercussions and the Economic Structure: An Input-Output Approach," The Review of Economics and Statistics, MIT Press, vol. 52(3), pages 262-271, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eivind Lekve Bjelle & Johannes Többen & Konstantin Stadler & Thomas Kastner & Michaela C. Theurl & Karl-Heinz Erb & Kjartan-Steen Olsen & Kirsten S. Wiebe & Richard Wood, 2020. "Adding country resolution to EXIOBASE: impacts on land use embodied in trade," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 9(1), pages 1-25, December.
    2. Bruckner, Martin & Wood, Richard & Moran, Daniel & Kuschnig, Nikolas & Wieland, Hanspeter & Maus, Victor & Börner, Jan, 2019. "FABIO - The Construction of the Food and Agriculture Biomass Input-Output Model," Ecological Economic Papers 27, WU Vienna University of Economics and Business.
    3. Hoffmann, Farina & Koellner, Thomas & Kastner, Thomas, 2021. "The micronutrient content of the European Union's agricultural trade," Ecological Economics, Elsevier, vol. 188(C).
    4. Anke Schaffartzik & Dominik Wiedenhofer & Nina Eisenmenger, 2015. "Raw Material Equivalents: The Challenges of Accounting for Sustainability in a Globalized World," Sustainability, MDPI, vol. 7(5), pages 1-26, April.
    5. Eisenmenger, Nina & Wiedenhofer, Dominik & Schaffartzik, Anke & Giljum, Stefan & Bruckner, Martin & Schandl, Heinz & Wiedmann, Thomas O. & Lenzen, Manfred & Tukker, Arnold & Koning, Arjan, 2016. "Consumption-based material flow indicators — Comparing six ways of calculating the Austrian raw material consumption providing six results," Ecological Economics, Elsevier, vol. 128(C), pages 177-186.
    6. Daniel Moran & Richard Wood, 2014. "Convergence Between The Eora, Wiod, Exiobase, And Openeu'S Consumption-Based Carbon Accounts," Economic Systems Research, Taylor & Francis Journals, vol. 26(3), pages 245-261, September.
    7. Karl Steininger & Pablo Munoz & Jonas Karstensen & Glen Peters & Rita Strohmaier & Erick Velazquez, 2017. "Austria’s Consumption-Based Greenhouse Gas Emissions: Identifying sectoral sources and destinations," EcoMod2017 10472, EcoMod.
    8. Freire-González, Jaume, 2017. "Evidence of direct and indirect rebound effect in households in EU-27 countries," Energy Policy, Elsevier, vol. 102(C), pages 270-276.
    9. Cong, Rong-Gang & Stefaniak, Irena & Madsen, Bjarne & Dalgaard, Tommy & Jensen, Jørgen Dejgård & Nainggolan, Doan & Termansen, Mette, 2017. "Where to implement local biotech innovations? A framework for multi-scale socio-economic and environmental impact assessment of Green Bio-Refineries," Land Use Policy, Elsevier, vol. 68(C), pages 141-151.
    10. Dolter, Brett & Victor, Peter A., 2016. "Casting a long shadow: Demand-based accounting of Canada's greenhouse gas emissions responsibility," Ecological Economics, Elsevier, vol. 127(C), pages 156-164.
    11. Matthias Pfaff & Rainer Walz, 2021. "Analysis of the development and structural drivers of raw‐material use in Germany," Journal of Industrial Ecology, Yale University, vol. 25(4), pages 1063-1075, August.
    12. Arendarczyk, Bart & Alexander, Peter & Brown, Calum & Rounsevell, Mark, 2023. "The impact of UK food and bioenergy imports on global land use under future socioeconomic scenarios (UK-SSPs)," 97th Annual Conference, March 27-29, 2023, Warwick University, Coventry, UK 334509, Agricultural Economics Society - AES.
    13. Franco Solís, Alberto & F.T. Avelino, André & Carrascal-Incera, André, 2020. "The evolution of household-induced value chains and their environmental implications," Ecological Economics, Elsevier, vol. 174(C).
    14. Hao, Yan & Zhang, Menghui & Zhang, Yan & Fu, Chenling & Lu, Zhongming, 2018. "Multi-scale analysis of the energy metabolic processes in the Beijing–Tianjin–Hebei (Jing-Jin-Ji) urban agglomeration," Ecological Modelling, Elsevier, vol. 369(C), pages 66-76.
    15. Freire-González, Jaume, 2017. "A new way to estimate the direct and indirect rebound effect and other rebound indicators," Energy, Elsevier, vol. 128(C), pages 394-402.
    16. Kalt, Gerald & Kaufmann, Lisa & Kastner, Thomas & Krausmann, Fridolin, 2021. "Tracing Austria's biomass consumption to source countries: A product-level comparison between bioenergy, food and material," Ecological Economics, Elsevier, vol. 188(C).
    17. Roux, Nicolas & Kastner, Thomas & Erb, Karl-Heinz & Haberl, Helmut, 2021. "Does agricultural trade reduce pressure on land ecosystems? Decomposing drivers of the embodied human appropriation of net primary production," Ecological Economics, Elsevier, vol. 181(C).
    18. Laterra, Pedro & Nahuelhual, Laura & Gluch, Mariana & Sirimarco, Ximena & Bravo, Gonzalo & Monjeau, Adrián, 2019. "How are jobs and ecosystem services linked at the local scale?," Ecosystem Services, Elsevier, vol. 35(C), pages 207-218.
    19. Arto, Iñaki & Cazcarro, Ignacio & Garmendia, Eneko & Ruiz, Itxaso & Sanz, María J., 2022. "A new accounting framework for assessing forest footprint of nations," Ecological Economics, Elsevier, vol. 194(C).
    20. Plank, Christina & Görg, Christoph & Kalt, Gerald & Kaufmann, Lisa & Dullinger, Stefan & Krausmann, Fridolin, 2023. "“Biomass from somewhere?” Governing the spatial mismatch of Viennese biomass consumption and its impact on biodiversity," Land Use Policy, Elsevier, vol. 131(C).

    More about this item

    Keywords

    Environmental Economics and Policy;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:ubzefd:271062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/zefbnde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.