IDEAS home Printed from https://ideas.repec.org/p/ags/ndtr10/207280.html
   My bibliography  Save this paper

Relieving Congestion at Intermodal Marine Container Terminals: Review of Tactical/Operational Strategies

Author

Listed:
  • Maguire, A.
  • Ivey, S.
  • Golias, M.M
  • Lipinski, M.E

Abstract

Until 2009, intermodal marine container terminals had experienced constant growth in container volumes since widespread containerized trade began. Even with the downturn in freight volumes due to recent economic conditions, forecasts are that freight volumes will rebound and will increase dramatically by 2020, resulting in substantial increases in congestion. The port industry is under pressure to develop strategies and capacity to accommodate these increasing freight volumes. Efficient gate operations are crucial to intermodal freight terminals since their impact is not isolated to the efficiency of the operations within the terminal but also extends to the road traffic on nearby freeways and access ramps. Inefficient gate operations can spill over to the surrounding roadway network causing serious safety and congestion problems, and degrading the reliability and performance of carriers, shippers, and terminal operators. Since intermodal freight terminals tend to be located in or near major cities, where right of way is limited and very expensive, implementing operational strategies to reduce the effect of the terminals truck related traffic to the surrounding roadway network becomes more important and more viable than physical capacity expansions. There is an ongoing discussion concerning the implementation of different gate operation strategies that may relieve these effects. Among the gate operation strategies being considered to relieve the impacts of congestion and delay are gate appointment systems, extended hours of operations for terminal gates, and advanced technologies for gates and terminals. The purpose of this paper is to critically review the published literature on the different gate strategies. This paper also presents existing attempts at reducing truck queues at terminal gates and improving terminal operations and traffic conditions in the vicinity of the terminals and the technologies available that support the implementation of this type of strategies.

Suggested Citation

  • Maguire, A. & Ivey, S. & Golias, M.M & Lipinski, M.E, 2010. "Relieving Congestion at Intermodal Marine Container Terminals: Review of Tactical/Operational Strategies," 51st Annual Transportation Research Forum, Arlington, Virginia, March 11-13, 2010 207280, Transportation Research Forum.
  • Handle: RePEc:ags:ndtr10:207280
    DOI: 10.22004/ag.econ.207280
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/207280/files/2010_161_Relieving_Congestion_Marine_Terminals_Strategies.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.207280?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Namboothiri, Rajeev & Erera, Alan L., 2008. "Planning local container drayage operations given a port access appointment system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(2), pages 185-202, March.
    2. Katta G. Murty & Yat-wah Wan & Jiyin Liu & Mitchell M. Tseng & Edmond Leung & Kam-Keung Lai & Herman W. C. Chiu, 2005. "Hongkong International Terminals Gains Elastic Capacity Using a Data-Intensive Decision-Support System," Interfaces, INFORMS, vol. 35(1), pages 61-75, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Gang & Govindan, Kannan & Golias, Mihalis M., 2013. "Reducing truck emissions at container terminals in a low carbon economy: Proposal of a queueing-based bi-objective model for optimizing truck arrival pattern," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 55(C), pages 3-22.
    2. Neven Grubisic & Tomislav Krljan & Livia Maglić & Siniša Vilke, 2020. "The Microsimulation Model for Assessing the Impact of Inbound Traffic Flows for Container Terminals Located near City Centers," Sustainability, MDPI, vol. 12(22), pages 1-19, November.
    3. Zehendner, Elisabeth & Feillet, Dominique, 2014. "Benefits of a truck appointment system on the service quality of inland transport modes at a multimodal container terminal," European Journal of Operational Research, Elsevier, vol. 235(2), pages 461-469.
    4. Jacobsson, Stefan & Arnäs, Per Olof & Stefansson, Gunnar, 2018. "Differentiation of access management services at seaport terminals: Facilitating potential improvements for road hauliers," Journal of Transport Geography, Elsevier, vol. 70(C), pages 256-264.
    5. Neagoe, Mihai & Taskhiri, Mohammad Sadegh & Nguyen, Hong-Oanh & Hvolby, Hans-Henrik & Turner, Paul A., 2018. "Exploring congestion impact beyond the bulk cargo terminal gate," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Logistics 4.0 and Sustainable Supply Chain Management: Innovative Solutions for Logistics and Sustainable Supply Chain Management in the Context of In, volume 26, pages 61-80, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    6. Smid, Martijn & Dekker, Sander & Wiegmans, Bart, 2016. "Modeling the cost sensitivity of intermodal inland waterway terminals: A scenario based approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 112-122.
    7. Filip Covic, 2017. "Re-marshalling in automated container yards with terminal appointment systems," Flexible Services and Manufacturing Journal, Springer, vol. 29(3), pages 433-503, December.
    8. Karol Moszyk & Mariusz Deja & Michal Dobrzynski, 2021. "Automation of the Road Gate Operations Process at the Container Terminal—A Case Study of DCT Gdańsk SA," Sustainability, MDPI, vol. 13(11), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leonard Heilig & Stefan Voß, 0. "Information systems in seaports: a categorization and overview," Information Technology and Management, Springer, vol. 0, pages 1-23.
    2. Leonard Heilig & Stefan Voß, 2017. "Information systems in seaports: a categorization and overview," Information Technology and Management, Springer, vol. 18(3), pages 179-201, September.
    3. Ku, Dusan & Arthanari, Tiru S., 2016. "Container relocation problem with time windows for container departure," European Journal of Operational Research, Elsevier, vol. 252(3), pages 1031-1039.
    4. Li, Dongjun & Dong, Jing-Xin & Song, Dong-Ping & Hicks, Christian & Singh, Surya Prakash, 2020. "Optimal contract design for the exchange of tradable truck permits at multiterminal ports," International Journal of Production Economics, Elsevier, vol. 230(C).
    5. Schulte, Frederik & Lalla-Ruiz, Eduardo & González-Ramírez, Rosa G. & Voß, Stefan, 2017. "Reducing port-related empty truck emissions: A mathematical approach for truck appointments with collaboration," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 195-212.
    6. Michael F. Gorman & John-Paul Clarke & Amir Hossein Gharehgozli & Michael Hewitt & René de Koster & Debjit Roy, 2014. "State of the Practice: A Review of the Application of OR/MS in Freight Transportation," Interfaces, INFORMS, vol. 44(6), pages 535-554, December.
    7. Lange, Ann-Kathrin & Kreuz, Felix & Langkau, Sven & Jahn, Carlos & Clausen, Uwe, 2020. "Defining the quota of truck appointment systems," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Data Science in Maritime and City Logistics: Data-driven Solutions for Logistics and Sustainability. Proceedings of the Hamburg International Conferen, volume 30, pages 211-246, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    8. Raka Jovanovic & Milan Tuba & Stefan Voß, 2017. "A multi-heuristic approach for solving the pre-marshalling problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(1), pages 1-28, March.
    9. Gharehgozli, A.H. & Roy, D. & de Koster, M.B.M., 2014. "Sea Container Terminals," ERIM Report Series Research in Management ERS-2014-009-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    10. Song, Yujian & Zhang, Jiantong & Liang, Zhe & Ye, Chunming, 2017. "An exact algorithm for the container drayage problem under a separation mode," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 231-254.
    11. Xiaoqing Sun & Manish Garg & Zahir Balaporia & Kendall Bailey & Ted Gifford, 2014. "Optimizing Transportation by Inventory Routing and Workload Balancing: Optimizing Daily Dray Operations Across an Intermodal Freight Network," Interfaces, INFORMS, vol. 44(6), pages 579-590, December.
    12. Shiri, Samaneh & Huynh, Nathan, 2016. "Optimization of drayage operations with time-window constraints," International Journal of Production Economics, Elsevier, vol. 176(C), pages 7-20.
    13. Caldeira dos Santos, Murillo & Pereira, Fábio Henrique, 2021. "Development and application of a dynamic model for road port access and its impacts on port-city relationship indicators," Journal of Transport Geography, Elsevier, vol. 96(C).
    14. Zehendner, Elisabeth & Feillet, Dominique, 2014. "Benefits of a truck appointment system on the service quality of inland transport modes at a multimodal container terminal," European Journal of Operational Research, Elsevier, vol. 235(2), pages 461-469.
    15. María D. Gracia & Rosa G. González-Ramírez & Julio Mar-Ortiz, 2017. "The impact of lanes segmentation and booking levels on a container terminal gate congestion," Flexible Services and Manufacturing Journal, Springer, vol. 29(3), pages 403-432, December.
    16. Creemers, Stefan & Lambrecht, Marc R. & Beliën, Jeroen & Van den Broeke, Maud, 2021. "Evaluation of appointment scheduling rules: A multi-performance measurement approach," Omega, Elsevier, vol. 100(C).
    17. Xue, Zhaojie & Zhang, Canrong & Lin, Wei-Hua & Miao, Lixin & Yang, Peng, 2014. "A tabu search heuristic for the local container drayage problem under a new operation mode," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 136-150.
    18. Zhang, Ruiyou & Lu, Jye-Chyi & Wang, Dingwei, 2014. "Container drayage problem with flexible orders and its near real-time solution strategies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 235-251.
    19. Iris F. A. Vis & Hector J. Carlo, 2010. "Sequencing Two Cooperating Automated Stacking Cranes in a Container Terminal," Transportation Science, INFORMS, vol. 44(2), pages 169-182, May.
    20. Chen, Gang & Govindan, Kannan & Yang, Zhongzhen, 2013. "Managing truck arrivals with time windows to alleviate gate congestion at container terminals," International Journal of Production Economics, Elsevier, vol. 141(1), pages 179-188.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:ndtr10:207280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: http://www.trforum.org/journal/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.