IDEAS home Printed from https://ideas.repec.org/p/ags/eaae05/24640.html
   My bibliography  Save this paper

Socio-economic Scenarios of Agricultural Land Use Change in Central and Eastern European Countries

Author

Listed:
  • Fekete-Farkas, Maria
  • Rounsevell, Mark
  • Audsley, Eric

Abstract

The study presented in this paper is part of the ACCELERATES (Assessing Climate Change Effects on Land Use and Ecosystems from Regional Analysis to The European Scale) project whose main goal is the construction of integrated predictions of future land use in Europe. The scenarios constructed in the project include estimates not only due to changes in the climate baseline, but also estimates due to possible future changes in socio-economics. The overall aim of the ACCELERATES was to assess the vulnerability of European agroecosystems based on economic and environmental considerations in term of both their sensitivity and capacity to adapt changes. The historical background, the type of economy, the policy aim and governance and importance of agriculture in the overall national economy have created large differences between Western and Central and Eastern European countries (CEECs). This paper focuses on vulnerability of the farm sector and rural economy of CEECs.

Suggested Citation

  • Fekete-Farkas, Maria & Rounsevell, Mark & Audsley, Eric, 2005. "Socio-economic Scenarios of Agricultural Land Use Change in Central and Eastern European Countries," 2005 International Congress, August 23-27, 2005, Copenhagen, Denmark 24640, European Association of Agricultural Economists.
  • Handle: RePEc:ags:eaae05:24640
    DOI: 10.22004/ag.econ.24640
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/24640/files/pp05fe01.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.24640?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J E Annetts & E Audsley, 2002. "Multiple objective linear programming for environmental farm planning," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(9), pages 933-943, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fekete-Farkas, Maria & Singh, Mahesh Kumar & Rounsevell, Mark & Audsley, Eric, 2008. "Dynamics Of Changes In Agricultural Land Use Arising From Climate, Policy And Socio-Economic Pressures In Europe," Bulletin of the Szent Istvan University 43336, Szent Istvan University, Faculty of Economics and Social Sciences.
    2. Marcela Prokopová & Ondřej Cudlín & Renata Včeláková & Szabolcs Lengyel & Luca Salvati & Pavel Cudlín, 2018. "Latent Drivers of Landscape Transformation in Eastern Europe: Past, Present and Future," Sustainability, MDPI, vol. 10(8), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Janssen, Sander & van Ittersum, Martin K., 2007. "Assessing farm innovations and responses to policies: A review of bio-economic farm models," Agricultural Systems, Elsevier, vol. 94(3), pages 622-636, June.
    2. Eric Audsley & Mirek Trnka & Santiago Sabaté & Joan Maspons & Anabel Sanchez & Daniel Sandars & Jan Balek & Kerry Pearn, 2015. "Interactively modelling land profitability to estimate European agricultural and forest land use under future scenarios of climate, socio-economics and adaptation," Climatic Change, Springer, vol. 128(3), pages 215-227, February.
    3. Soraya Tanure & Carlos Nabinger & João Luiz Becker, 2015. "Bioeconomic Model of Decision Support System for Farm Management: Proposal of a Mathematical Model," Systems Research and Behavioral Science, Wiley Blackwell, vol. 32(6), pages 658-671, November.
    4. Shunyu Yao & Neng Fan & Clark Seavert & Trent Teegerstrom, 2023. "Demand-Driven Harvest Planning and Machinery Scheduling for Guayule," SN Operations Research Forum, Springer, vol. 4(1), pages 1-25, March.
    5. Salassi, Michael E. & Deliberto, Michael A. & Guidry, Kurt M., 2013. "Economically optimal crop sequences using risk-adjusted network flows: Modeling cotton crop rotations in the southeastern United States," Agricultural Systems, Elsevier, vol. 118(C), pages 33-40.
    6. Groot, Jeroen C.J. & Rossing, Walter a.H. & Tichit, Muriel & Turpin, Nadine & Jellema, André & Baudry, Jacques & Verburg, Peter & Doyen, Luc & van de Ven, Gerrie, 2009. "On the contribution of modelling to multifunctional agriculture: learning from comparisons," MPRA Paper 65467, University Library of Munich, Germany.
    7. Tanure, Soraya & Nabinger, Carlos & Becker, João Luiz, 2013. "Bioeconomic model of decision support system for farm management. Part I: Systemic conceptual modeling," Agricultural Systems, Elsevier, vol. 115(C), pages 104-116.
    8. Heidari, Mohammad Davoud & Turner, Ian & Ardestani-Jaafari, Amir & Pelletier, Nathan, 2021. "Operations research for environmental assessment of crop-livestock production systems," Agricultural Systems, Elsevier, vol. 193(C).
    9. Viaggi, Davide & Raggi, Meri & Gomez y Paloma, Sergio, 2010. "An integer programming dynamic farm-household model to evaluate the impact of agricultural policy reforms on farm investment behaviour," European Journal of Operational Research, Elsevier, vol. 207(2), pages 1130-1139, December.
    10. Ira R. Cooke & Elizabeth H. A. Mattison & Eric Audsley & Alison P. Bailey & Robert P. Freckleton & Anil R. Graves & Joe Morris & Simon A. Queenborough & Daniel L. Sandars & Gavin M. Siriwardena & Paul, 2013. "Empirical Test of an Agricultural Landscape Model," SAGE Open, , vol. 3(2), pages 21582440134, April.
    11. Cervantes-Gaxiola, Maritza E. & Sosa-Niebla, Erik F. & Hernández-Calderón, Oscar M. & Ponce-Ortega, José M. & Ortiz-del-Castillo, Jesús R. & Rubio-Castro, Eusiel, 2020. "Optimal crop allocation including market trends and water availability," European Journal of Operational Research, Elsevier, vol. 285(2), pages 728-739.
    12. Babic, Zoran & Peric, Tunjo, 2011. "Optimization of livestock feed blend by use of goal programming," International Journal of Production Economics, Elsevier, vol. 130(2), pages 218-223, April.
    13. Happe, K. & Hutchings, N.J. & Dalgaard, T. & Kellerman, K., 2011. "Modelling the interactions between regional farming structure, nitrogen losses and environmental regulation," Agricultural Systems, Elsevier, vol. 104(3), pages 281-291, March.
    14. Carravilla, M. A. & Oliveira, J. F., 2013. "Operations Research in Agriculture: Better Decisions for a Scarce and Uncertain World," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 5(2), pages 1-10, June.
    15. Graves, A.R. & Morris, J. & Deeks, L.K. & Rickson, R.J. & Kibblewhite, M.G. & Harris, J.A. & Farewell, T.S. & Truckle, I., 2015. "The total costs of soil degradation in England and Wales," Ecological Economics, Elsevier, vol. 119(C), pages 399-413.
    16. Vecino, Julio Berbel & Baldovín, Maria Jose López & Gutierrez, Carlos, 2005. "Multicriteria and Multiperiod Programming for Scenario Analysis in Guadalquivir River Irrigated Farming," 2005 International Congress, August 23-27, 2005, Copenhagen, Denmark 24612, European Association of Agricultural Economists.
    17. Kusumastuti, Ratih Dyah & Donk, Dirk Pieter van & Teunter, Ruud, 2016. "Crop-related harvesting and processing planning: a review," International Journal of Production Economics, Elsevier, vol. 174(C), pages 76-92.
    18. M J López-Baldovin & C Gutiérrez-Martin & J Berbel, 2006. "Multicriteria and multiperiod programming for scenario analysis in Guadalquivir river irrigated farming," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(5), pages 499-509, May.
    19. Aurbacher, Joachim & Dabbert, Stephan, 2011. "Generating crop sequences in land-use models using maximum entropy and Markov chains," Agricultural Systems, Elsevier, vol. 104(6), pages 470-479, July.
    20. Angelo Aliano Filho & Helenice Oliveira Florentino & Margarida Vaz Pato & Sônia Cristina Poltroniere & João Fernando Silva Costa, 2022. "Exact and heuristic methods to solve a bi-objective problem of sustainable cultivation," Annals of Operations Research, Springer, vol. 314(2), pages 347-376, July.

    More about this item

    Keywords

    Land Economics/Use;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:eaae05:24640. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/eaaeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.