IDEAS home Printed from https://ideas.repec.org/p/ags/eaa166/276232.html
   My bibliography  Save this paper

The Agri-Environmental Knowledge Innovation System for Water Quality Improvement

Author

Listed:
  • O'Donoghue, Cathal
  • Ryan, Mary
  • Kilcline, Kevin
  • Daly, Karen
  • Fenton, Owen
  • Heanue, Kevin
  • Kingston, Suzanne
  • Sherry, Jenny Mac
  • Murphy, Pat
  • O’Hora, Denis

Abstract

In this paper we have taken an Innovation Systems approach to examine the structure and function of the Irish Agri-Environmental Knowledge and Innovation System with the aim of improving water quality in Ireland. Utilising a methodology due to Hekkert et al., (2007), we described and analysed the Innovation System under a number of headings, particularly focusing on specific incentives and features. A key part in changing the regulatory or public incentive system is to change the behaviour not only of the farmers but also of the policy makers to facilitate the movement to a more localised approach. The fundamental message of this paper is that improving a complex local environmental externality • Requires local solutions and information and incentives • Taking an Innovation System perspective to the problem solution • Means that changing the behaviour of farmers may involve changing the behaviour of others upstream within the innovation system, requiring an examination of their incentives and motivations • Local information is necessary to facilitate local decisions • While solutions are local, one must by mindful of transaction costs. Where transaction costs higher than the cost of implementation locally, then it may make sense to focus on less targeted measures, particularly in areas with lower risk.

Suggested Citation

  • O'Donoghue, Cathal & Ryan, Mary & Kilcline, Kevin & Daly, Karen & Fenton, Owen & Heanue, Kevin & Kingston, Suzanne & Sherry, Jenny Mac & Murphy, Pat & O’Hora, Denis, 2018. "The Agri-Environmental Knowledge Innovation System for Water Quality Improvement," 166th Seminar, August 30-31, 2018, Galway, West of Ireland 276232, European Association of Agricultural Economists.
  • Handle: RePEc:ags:eaa166:276232
    DOI: 10.22004/ag.econ.276232
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/276232/files/The%20Agri-Environmental%20Knowledge%20Innovation%20System%20for%20Water%20Quality%20Improvement.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.276232?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. K. William Kapp, 1976. "The Nature And Significance Of Institutional Economics," Kyklos, Wiley Blackwell, vol. 29(2), pages 209-232, January.
    2. Marothia, Dinesh K., 1997. "Agricultural Technology and Environmental Quality: An Institutional Perspective," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 52(3), September.
    3. World Bank, 2007. "Enhancing Agricultural Innovation : How to Go Beyond the Strengthening of Research Systems," World Bank Publications - Books, The World Bank Group, number 7184, December.
    4. PeterJ May & Søren Winter, 1999. "Regulatory enforcement and compliance: Examining Danish agro-environmental policy," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 18(4), pages 625-651.
    5. Glenka, Klaus & Eorya, Vera & Colombo, Sergio & Barnes, Andrew Peter, 2014. "Adoption of greenhouse gas mitigation in agriculture: an analysis of dairy farmers’ preferences and adoption behaviour," 88th Annual Conference, April 9-11, 2014, AgroParisTech, Paris, France 170358, Agricultural Economics Society.
    6. Buckley, Cathal, 2012. "Implementation of the EU Nitrates Directive in the Republic of Ireland — A view from the farm," Ecological Economics, Elsevier, vol. 78(C), pages 29-36.
    7. Pushpam Kumar & Uwe A. Schneider, 2008. "Greenhouse gas emission mitigation through agriculture," Working Papers FNU-155, Research unit Sustainability and Global Change, Hamburg University, revised Feb 2008.
    8. Schmid, Otto & Padel, Susanne & Levidow, Les, 2012. "The Bio-Economy Concept and Knowledge Base in a Public Goods and Farmer Perspective," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 1(1), pages 1-18, April.
    9. Leslie Lipper & Takumi Sakuyama & Randy Stringer & David Zilberman (ed.), 2009. "Payment for Environmental Services in Agricultural Landscapes," Natural Resource Management and Policy, Springer, number 978-0-387-72971-8, December.
    10. Hari Dulal & Gernot Brodnig & Kalim Shah, 2011. "Capital assets and institutional constraints to implementation of greenhouse gas mitigation options in agriculture," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 16(1), pages 1-23, January.
    11. Julie Ingram, 2008. "Agronomist–farmer knowledge encounters: an analysis of knowledge exchange in the context of best management practices in England," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 25(3), pages 405-418, September.
    12. Läpple, Doris & Rensburg, Tom Van, 2011. "Adoption of organic farming: Are there differences between early and late adoption?," Ecological Economics, Elsevier, vol. 70(7), pages 1406-1414, May.
    13. Glenk, Klaus & Eory, Vera & Colombo, Sergio & Barnes, Andrew, 2014. "Adoption of greenhouse gas mitigation in agriculture: An analysis of dairy farmers' perceptions and adoption behaviour," Ecological Economics, Elsevier, vol. 108(C), pages 49-58.
    14. Kapp, K William, 1976. "The Nature and Significance of Insitutional Economics," Kyklos, Wiley Blackwell, vol. 29(2), pages 209-232.
    15. Schneider, Uwe A. & Kumar, Pushpam, 2008. "Greenhouse Gas Mitigation through Agriculture," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 23(1), pages 1-5.
    16. Uwe A. Schneider & Pete Smith, 2008. "Greenhouse Gas Emission Mitigation and Emission Intensities in Agriculture," Working Papers FNU-164, Research unit Sustainability and Global Change, Hamburg University, revised Jul 2008.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Jiandong & Cheng, Shulei & Song, Malin, 2018. "Changes in energy-related carbon dioxide emissions of the agricultural sector in China from 2005 to 2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 748-761.
    2. Jiake Li & Wei Wang & Meng Li & Qiao Li & Zeming Liu & Wei Chen & Yanan Wang, 2022. "Impact of Land Management Scale on the Carbon Emissions of the Planting Industry in China," Land, MDPI, vol. 11(6), pages 1-15, May.
    3. Hari Wahyu Wijayanto & Kai-An Lo & Hery Toiba & Moh Shadiqur Rahman, 2022. "Does Agroforestry Adoption Affect Subjective Well-Being? Empirical Evidence from Smallholder Farmers in East Java, Indonesia," Sustainability, MDPI, vol. 14(16), pages 1-10, August.
    4. Zhen, Wei & Qin, Quande & Wei, Yi-Ming, 2017. "Spatio-temporal patterns of energy consumption-related GHG emissions in China's crop production systems," Energy Policy, Elsevier, vol. 104(C), pages 274-284.
    5. Huarui Gong & Jing Li & Zhen Liu & Yitao Zhang & Ruixing Hou & Zhu Ouyang, 2022. "Mitigated Greenhouse Gas Emissions in Cropping Systems by Organic Fertilizer and Tillage Management," Land, MDPI, vol. 11(7), pages 1-18, July.
    6. Oliver Lazarus & Sonali McDermid & Jennifer Jacquet, 2021. "The climate responsibilities of industrial meat and dairy producers," Climatic Change, Springer, vol. 165(1), pages 1-21, March.
    7. David Bryngelsson & Fredrik Hedenus & Daniel J. A. Johansson & Christian Azar & Stefan Wirsenius, 2017. "How Do Dietary Choices Influence the Energy-System Cost of Stabilizing the Climate?," Energies, MDPI, vol. 10(2), pages 1-13, February.
    8. Soy-Massoni, Emma & Langemeyer, Johannes & Varga, Diego & Sáez, Marc & Pintó, Josep, 2016. "The importance of ecosystem services in coastal agricultural landscapes: Case study from the Costa Brava, Catalonia," Ecosystem Services, Elsevier, vol. 17(C), pages 43-52.
    9. Telmo José Mendes & Diego Silva Siqueira & Eduardo Barretto Figueiredo & Ricardo de Oliveira Bordonal & Mara Regina Moitinho & José Marques Júnior & Newton La Scala Jr., 2021. "Soil carbon stock estimations: methods and a case study of the Maranhão State, Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16410-16427, November.
    10. Ancuta Isbasoiu & Pierre-Alain Jayet & Stéphane De Cara, 2021. "Increasing food production and mitigating agricultural greenhouse gas emissions in the European Union: impacts of carbon pricing and calorie production targeting," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(2), pages 409-440, April.
    11. Amanda Silva‐Parra & Juan Manuel Trujillo‐González & Eric C. Brevik, 2021. "Greenhouse gas balance and mitigation potential of agricultural systems in Colombia: A systematic analysis," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(3), pages 554-572, June.
    12. Wang, Guangshuai & Liang, Yueping & Zhang, Qian & Jha, Shiva K. & Gao, Yang & Shen, Xiaojun & Sun, Jingsheng & Duan, Aiwang, 2016. "Mitigated CH4 and N2O emissions and improved irrigation water use efficiency in winter wheat field with surface drip irrigation in the North China Plain," Agricultural Water Management, Elsevier, vol. 163(C), pages 403-407.
    13. Saw Min & Martin Rulík, 2020. "Comparison of Carbon Dioxide (CO 2 ) Fluxes between Conventional and Conserved Irrigated Rice Paddy Fields in Myanmar," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    14. Connor, Melanie & de Guia, Annalyn H. & Quilloy, Reianne & Van Nguyen, Hung & Gummert, Martin & Sander, Bjoern Ole, 2020. "When climate change is not psychologically distant – Factors influencing the acceptance of sustainable farming practices in the Mekong river Delta of Vietnam," World Development Perspectives, Elsevier, vol. 18(C).
    15. Franco-Luesma, Samuel & Álvaro-Fuentes, Jorge & Plaza-Bonilla, Daniel & Arrúe, José Luis & Cantero-Martínez, Carlos & Cavero, José, 2019. "Influence of irrigation time and frequency on greenhouse gas emissions in a solid-set sprinkler-irrigated maize under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 221(C), pages 303-311.
    16. Anna Kocira & Mariola Staniak & Marzena Tomaszewska & Rafał Kornas & Jacek Cymerman & Katarzyna Panasiewicz & Halina Lipińska, 2020. "Legume Cover Crops as One of the Elements of Strategic Weed Management and Soil Quality Improvement. A Review," Agriculture, MDPI, vol. 10(9), pages 1-41, September.
    17. Kerstin Jantke & Martina J. Hartmann & Livia Rasche & Benjamin Blanz & Uwe A. Schneider, 2020. "Agricultural Greenhouse Gas Emissions: Knowledge and Positions of German Farmers," Land, MDPI, vol. 9(5), pages 1-13, April.
    18. Song, Guobao & Song, Jie & Zhang, Shushen, 2016. "Modelling the policies of optimal straw use for maximum mitigation of climate change in China from a system perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 789-810.
    19. Kathrin Hasler & Hans-Werner Olfs & Onno Omta & Stefanie Bröring, 2016. "Drivers for the Adoption of Eco-Innovations in the German Fertilizer Supply Chain," Sustainability, MDPI, vol. 8(8), pages 1-18, July.
    20. Miomir Jovanović & Ljiljana Kašćelan & Aleksandra Despotović & Vladimir Kašćelan, 2015. "The Impact of Agro-Economic Factors on GHG Emissions: Evidence from European Developing and Advanced Economies," Sustainability, MDPI, vol. 7(12), pages 1-21, December.

    More about this item

    Keywords

    Agricultural and Food Policy; Environmental Economics and Policy;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:eaa166:276232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/eaaeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.