IDEAS home Printed from https://ideas.repec.org/p/ags/aesc17/258636.html
   My bibliography  Save this paper

The dynamic Luenberger-Hicks-Moorsteen productivity indicator with an application to dairy farms in South West England

Author

Listed:
  • Ang, Frederic
  • Kerstens, Pieter Jan

Abstract

This paper introduces a dynamic Luenberger-Hicks-Moorsteen (LHM) productivity indicator that takes into account the adjustment costs of changing the level of quasi-fixed capital inputs. Being additively complete in the dynamic sense, the LHM indicator is decomposed into contributions of outputs, variable inputs and investments in dynamic factors. Moreover, we decompose the LHM indicator into technical change, technical inefficiency change and scale ineffi- ciency change using an investment-, output- and input-direction. Employing a nonparametric framework, the empirical application focuses on the dairy sector in South West England over the period 2001 − 2014.

Suggested Citation

  • Ang, Frederic & Kerstens, Pieter Jan, 2017. "The dynamic Luenberger-Hicks-Moorsteen productivity indicator with an application to dairy farms in South West England," 91st Annual Conference, April 24-26, 2017, Royal Dublin Society, Dublin, Ireland 258636, Agricultural Economics Society.
  • Handle: RePEc:ags:aesc17:258636
    DOI: 10.22004/ag.econ.258636
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/258636/files/Frederic_Ang_dynlhmAES.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.258636?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Diewert, W. Erwin & Fox, Kevin J., 2014. "Reference technology sets, Free Disposal Hulls and productivity decompositions," Economics Letters, Elsevier, vol. 122(2), pages 238-242.
    2. Banker, Rajiv D. & Chang, Hsihui, 2006. "The super-efficiency procedure for outlier identification, not for ranking efficient units," European Journal of Operational Research, Elsevier, vol. 175(2), pages 1311-1320, December.
    3. Supawat Rungsuriyawiboon & Spiro Stefanou, 2008. "The dynamics of efficiency and productivity growth in U.S. electric utilities," Journal of Productivity Analysis, Springer, vol. 30(3), pages 177-190, December.
    4. Fare, Rolf & Grosskopf, Shawna & Noh, Dong-Woon & Weber, William, 2005. "Characteristics of a polluting technology: theory and practice," Journal of Econometrics, Elsevier, vol. 126(2), pages 469-492, June.
    5. Magdalena Kapelko & Alfons Oude Lansink & Spiro E Stefanou, 2015. "Effect of Food Regulation on the Spanish Food Processing Industry: A Dynamic Productivity Analysis," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-16, June.
    6. Diewert, W. Erwin & Fox, Kevin J., 2017. "Decomposing productivity indexes into explanatory factors," European Journal of Operational Research, Elsevier, vol. 256(1), pages 275-291.
    7. Silva, Elvira & Lansink, Alfons Oude & Stefanou, Spiro E., 2015. "The adjustment-cost model of the firm: Duality and productive efficiency," International Journal of Production Economics, Elsevier, vol. 168(C), pages 245-256.
    8. Frederic Ang & Pieter Jan Kerstens, 2016. "To Mix or Specialise? A Coordination Productivity Indicator for English and Welsh farms," Journal of Agricultural Economics, Wiley Blackwell, vol. 67(3), pages 779-798, September.
    9. Elvira Silva & Spiro Stefanou, 2003. "Nonparametric Dynamic Production Analysis and the Theory of Cost," Journal of Productivity Analysis, Springer, vol. 19(1), pages 5-32, January.
    10. Yir-Hueih Luh & Spiro E. Stefanou, 1991. "Productivity Growth in U.S. Agriculture under Dynamic Adjustment," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 73(4), pages 1116-1125.
    11. Thomas L. Cox & Michael K. Wohlgenant, 1986. "Prices and Quality Effects in Cross-Sectional Demand Analysis," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 68(4), pages 908-919.
    12. Walter Briec & Kristiaan Kerstens, 2004. "A Luenberger-Hicks-Moorsteen productivity indicator: its relation to the Hicks-Moorsteen productivity index and the Luenberger productivity indicator," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 23(4), pages 925-939, May.
    13. Lansink, Alfons Oude & Stefanou, Spiro & Serra, Teresa, 2015. "Primal and dual dynamic Luenberger productivity indicators," European Journal of Operational Research, Elsevier, vol. 241(2), pages 555-563.
    14. Robert G. Chambers, 2002. "Exact nonradial input, output, and productivity measurement," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 20(4), pages 751-765.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Engida, Tadesse Getacher & Rao, Xudong & Oude Lansink, Alfons G.J.M., 2020. "A dynamic by-production framework for analyzing inefficiency associated with corporate social responsibility," European Journal of Operational Research, Elsevier, vol. 287(3), pages 1170-1179.
    2. Frederic Ang & Kristiaan Kerstens & Jafar Sadeghi, 2023. "Energy productivity and greenhouse gas emission intensity in Dutch dairy farms: A Hicks–Moorsteen by‐production approach under non‐convexity and convexity with equivalence results," Journal of Agricultural Economics, Wiley Blackwell, vol. 74(2), pages 492-509, June.
    3. Ang, Frederic & Kerstens, Pieter Jan, 2020. "A superlative indicator for the Luenberger-Hicks-Moorsteen productivity indicator: Theory and application," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1161-1173.
    4. Frederic Ang & Pieter Jan Kerstens, 2023. "Robust nonparametric analysis of dynamic profits, prices and productivity: An application to French meat-processing firms," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 50(2), pages 771-809.
    5. Frederic Ang & Pieter Jan Kerstens, 2016. "To Mix or Specialise? A Coordination Productivity Indicator for English and Welsh farms," Journal of Agricultural Economics, Wiley Blackwell, vol. 67(3), pages 779-798, September.
    6. Tomas Balezentis & Kristiaan Kerstens & Zhiyang Shen, 2022. "Economic and Environmental Decomposition of Luenberger-Hicks-Moorsteen Total Factor Productivity Indicator: Empirical Analysis of Chinese Textile Firms With a Focus on Reporting Infeasibilities and Qu," Post-Print hal-03833245, HAL.
    7. Tomas Balezentis & Zhiyang Shen, 2017. "An environmental Luenberger-Hicks-Moorsteen. Total Factor Productivityindicator for OECD Countries," Working Papers 2017-EQM-02, IESEG School of Management.
    8. Zhiyang Shen & Kristiaan Kerstens & Tomas Baležentis, 2023. "An environmental Luenberger–Hicks–Moorsteen total factor productivity indicator: empirical analysis considering undesirable outputs either as inputs or outputs, and attention for infeasibilities," Post-Print hal-04273656, HAL.
    9. Ang, Frederic & Kerstens, Pieter Jan, 2017. "Decomposing the Luenberger–Hicks–Moorsteen Total Factor Productivity indicator: An application to U.S. agriculture," European Journal of Operational Research, Elsevier, vol. 260(1), pages 359-375.
    10. Silva, Elvira & Lansink, Alfons Oude & Stefanou, Spiro E., 2015. "The adjustment-cost model of the firm: Duality and productive efficiency," International Journal of Production Economics, Elsevier, vol. 168(C), pages 245-256.
    11. Lansink, Alfons Oude & Stefanou, Spiro & Serra, Teresa, 2015. "Primal and dual dynamic Luenberger productivity indicators," European Journal of Operational Research, Elsevier, vol. 241(2), pages 555-563.
    12. Mocholi-Arce, Manuel & Sala-Garrido, Ramon & Molinos-Senante, Maria & Maziotis, Alexandros, 2021. "Water company productivity change: A disaggregated approach accounting for changes in inputs and outputs," Utilities Policy, Elsevier, vol. 70(C).
    13. Jean Joseph Minviel & Timo Sipiläinen, 2021. "A dynamic stochastic frontier approach with persistent and transient inefficiency and unobserved heterogeneity," Agricultural Economics, International Association of Agricultural Economists, vol. 52(4), pages 575-589, July.
    14. Tomas Baležentis & Alfons Oude Lansink, 2020. "Measuring dynamic biased technical change in Lithuanian cereal farms," Agribusiness, John Wiley & Sons, Ltd., vol. 36(2), pages 208-225, April.
    15. Pinar Celikkol Geylani & Magdalena Kapelko & Spiro E. Stefanou, 2021. "Dynamic productivity change differences between global and non-global firms: a firm-level application to the U.S. food and beverage industries," Operational Research, Springer, vol. 21(2), pages 901-923, June.
    16. Magdalena Kapelko & Alfons Oude Lansink & Encarna Guillamon‐Saorin, 2021. "Corporate social responsibility and dynamic productivity change in the US food and beverage manufacturing industry," Agribusiness, John Wiley & Sons, Ltd., vol. 37(2), pages 286-305, April.
    17. Silva, Elvira & Magalhães, Manuela, 2023. "Environmental efficiency, irreversibility and the shadow price of emissions," European Journal of Operational Research, Elsevier, vol. 306(2), pages 955-967.
    18. Arnaud Abad & Paola Ravelojaona, 2020. "A Generalization of Environmental Productivity Analysis," Working Papers hal-02964799, HAL.
    19. Dakpo, K Hervé & Lansink, Alfons Oude, 2019. "Dynamic pollution-adjusted inefficiency under the by-production of bad outputs," European Journal of Operational Research, Elsevier, vol. 276(1), pages 202-211.
    20. Kristiaan Kerstens & Jafar Sadeghi & Ignace Van de Woestyne & Linjia Zhang, 2022. "Malmquist productivity indices and plant capacity utilisation: new proposals and empirical application," Annals of Operations Research, Springer, vol. 315(1), pages 221-250, August.

    More about this item

    Keywords

    Farm Management; Productivity Analysis; Research Methods/ Statistical Methods;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aesc17:258636. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aesukea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.