Advanced Search
MyIDEAS: Login to save this paper or follow this series

Integrated, dynamic economic – hydrology model of the Murray-Darling Basin

Contents:

Author Info

  • Kirby, Mac
  • Mainuddin, Mohammed
  • Gao, Lei
  • Connor, Jeffery D.
  • Ahmad, Mobin-ud-Din
Registered author(s):

Abstract

We aim to model the impact of variability in and changes to water availability in the Murray-Darling Basin on flows available to the environment and irrigation, and impact on the value of irrigated agricultural production. Our objective is to understand the opportunities for changed management of the basin, how they are constrained by climate change and other factors, and how they might affect the returns to irrigation and flows for the environment, so that we may provide information to help plan for the future. In this paper we describe the model: in other papers in this conference we describe analyses of water availability and use in the basin based on this model. The hydrology component of the model is based on a simple, monthly water balance stocks and flows model of the basin, subdivided into 58 catchments. In each catchment, the rainfall and potential evapotranspiration are used to partition the rain between actual evapotranspiration and runoff. Runoff accumulates in the rivers, and flows downstream; it is stored in dams, fills lakes and wetlands from which it evaporates, spills onto and is partly consumed on the floodplains, is diverted for irrigation, eventually (if enough water remains) flowing out of the mouth. This hydrology part of the model is calibrated against observations of flow at the downstream flow gauge of the 58 catchments (the records of which vary from a few years to the full 114 years of our typical simulation period from 1895-2009). It simulates reasonably well the full range of flows, and the development of dams and irrigation diversions. The economics part of the model is based on regressions with dependent variables: the observed areas, production, water use and gross value of production of irrigated agriculture. Each dependent variable is estimated as functions of water available, evaporation and rainfall, and crop prices, for ten major commodity groups. The regressions are based on data for 17 regions and four recent years during the drought: they cover a wide range of water uses, water availability, rainfall, evaporation and commodity price circumstances observed during the drought. We report separately in this conference on this statistical analysis (Connor et al, 2012a. In the integrated model, the hydrology model first determines the availability of water for irrigation in the 58 catchments and also calculates the flows, on a monthly cycle. Once per year, the water availability values are aggregated to the 17 economic regions, and the economic model determines the irrigation outcome in terms of areas under each commodity group in each region and the gross value of production. The integrated model has some unique features in comparison to existing MDB economics models: the coupling of economics with detailed hydrology; the ability to simulate active management of environmental flows and the resulting consumptive water use economic impacts; and, the ability to simulate the dynamics of the water balance and economic impact over 114 year historical and simulated future climate sequences.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://purl.umn.edu/124487
Download Restriction: no

Bibliographic Info

Paper provided by Australian Agricultural and Resource Economics Society in its series 2012 Conference (56th), February 7-10, 2012, Freemantle, Australia with number 124487.

as in new window
Length:
Date of creation: Feb 2012
Date of revision:
Handle: RePEc:ags:aare12:124487

Contact details of provider:
Postal: AARES Central Office Manager, Crawford School of Public Policy, ANU, Canberra ACT 0200
Phone: 0409 032 338
Email:
Web page: http://www.aares.info/
More information through EDIRC

Related research

Keywords: Crop Production/Industries;

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Rupert Quentin Grafton & Qiang Jiang, 2011. "Economic effects of water recovery on irrigated agriculture in the Murray‐Darling Basin," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 55(4), pages 487-499, October.
  2. Kirby, Mac & Connor, Jeffery D. & Bark, Rosalind H. & Qureshi, Muhammad Ejaz & Keyworth, Scott W., 2012. "The economic impact of water reductions during the Millennium Drought in the Murray-Darling Basin," 2012 Conference (56th), February 7-10, 2012, Freemantle, Australia 124490, Australian Agricultural and Resource Economics Society.
  3. Connor, Jeffery D. & Ahmad, Mobin-ud-Din & King, Darran & Banerjee, Onil & Mainuddin, Mohammed & Gao, Lei, 2012. "Murray Darling Basin Irrigation Adaptation to Drought: A Statistical Evaluation," 2012 Conference (56th), February 7-10, 2012, Freemantle, Australia 124266, Australian Agricultural and Resource Economics Society.
  4. Ringler, Claudia, 2001. "Optimal Water Allocation In The Mekong River Basin," Discussion Papers 18745, University of Bonn, Center for Development Research (ZEF).
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:ags:aare12:124487. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (AgEcon Search).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.