IDEAS home Printed from https://ideas.repec.org/p/ags/aaea03/22123.html
   My bibliography  Save this paper

Time Series Analysis Of Satellite Data: Deforestation In Southern Mexico

Author

Listed:
  • Geoghegan, Jacqueline
  • Hewitt, Julie A.
  • Vance, Colin

Abstract

Tropical deforestation is significant to a range of themes that have relevance for the study of environmental change and economic development, including global warming, land degradation, species extinction, and sustainability issues. Recognition that both the location and pattern of forest clearance are often as important as its magnitude has motivated an increasing number of econometric studies that link satellite data and government census data with the aim of modeling the spatial dimensions of deforestation processes. Initial research focused on time series analysis, while recent work has started developing models that make use of time series data on land use. In this paper, we use satellite data from three dates over an approximate 15-year period to estimate the probability of a satellite pixel being in a forested or human-disturbed state. Our study focuses on land-use change in an agricultural frontier spanning the southern Mexican states of Campeche and Quintana Roo. This region contains one of the largest and oldest expanses of tropical forests in the Americas outside of Amazonia and has been identified as a "hot spot" of forest and biotic diversity loss. Over the past 30 years, these forests have been under sustained pressure following the construction of a highway in 1972 that opened the frontier to settlement. The road was part of a larger development effort to promote agricultural colonization and has contributed to a prolonged period of land transformation that has been captured by Thematic Mapper (TM) satellite imagery. We capture these landscape dynamics by assembling a spatial database that links the pixels from three TM images spanning the years 1986-1997 and other spatial environmental and GIS-location derived data with government census socio-economic data of data. We develop a simple utility-maximizing model of the forest clearance decision. Based on previous research, the theoretical model suggests many possible determinants of forest clearance in an economic environment characterized by missing or thin markets, as typifies frontier regions in the nascent stages of economic development. We subsequently test the significance of these determinants using discrete choice analysis These modeling questions have particular relevance for informing carbon sequestration and global warming policy initiatives. Other on-going research conducted by the ecologists associated with the project focus on the species composition, abundance, structure, and re-growth of the different forests types in the region. In addition, litter and biomass studies have been completed which included carbon estimates for the different forest types, including forest re-growth on agricultural land, as function of fallow cycle dynamics. Fallow cycle dynamics are extremely important as the region is dominated by semi-subsistence agriculture with very little chemical inputs, so farmers depend on the fallow cycle to restore soil productivity. It will be these detailed data that will be used to calculate baseline carbon sequestration amounts.

Suggested Citation

  • Geoghegan, Jacqueline & Hewitt, Julie A. & Vance, Colin, 2003. "Time Series Analysis Of Satellite Data: Deforestation In Southern Mexico," 2003 Annual meeting, July 27-30, Montreal, Canada 22123, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
  • Handle: RePEc:ags:aaea03:22123
    DOI: 10.22004/ag.econ.22123
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/22123/files/sp03he05.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.22123?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chomitz, Kenneth M & Gray, David A, 1996. "Roads, Land Use, and Deforestation: A Spatial Model Applied to Belize," The World Bank Economic Review, World Bank, vol. 10(3), pages 487-512, September.
    2. Irwin, Elena G. & Bell, Kathleen P. & Geoghegan, Jacqueline, 2003. "Modeling and Managing Urban Growth at the Rural-Urban Fringe: A Parcel-Level Model of Residential Land Use Change," Agricultural and Resource Economics Review, Cambridge University Press, vol. 32(1), pages 83-102, April.
    3. Gary Chamberlain, 1980. "Analysis of Covariance with Qualitative Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 47(1), pages 225-238.
    4. Gerald C. Nelson & Daniel Hellerstein, 1997. "Do Roads Cause Deforestation? Using Satellite Images in Econometric Analysis of Land Use," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 79(1), pages 80-88.
    5. Nelson, Gerald C. & Geoghegan, Jacqueline, 2002. "Deforestation and land use change: sparse data environments," Agricultural Economics, Blackwell, vol. 27(3), pages 201-216, November.
    6. Munroe, Darla K. & Southworth, Jane & Tucker, Catherine M., 2002. "The dynamics of land-cover change in western Honduras: exploring spatial and temporal complexity," Agricultural Economics, Blackwell, vol. 27(3), pages 355-369, November.
    7. Elena G. Irwin, 2002. "Interacting agents, spatial externalities and the evolution of residential land use patterns," Journal of Economic Geography, Oxford University Press, vol. 2(1), pages 31-54, January.
    8. Gerald C. Nelson & GVirginia Harris & Steven W. Stone, 2001. "Deforestation, Land Use, and Property Rights: Empirical Evidence from Darién, Panama," Land Economics, University of Wisconsin Press, vol. 77(2), pages 187-205.
    9. Cropper, Maureen & Griffiths, Charles & Mani, Muthukumara, 1997. "Roads, population pressures, and deforestation in Thailand, 1976-89," Policy Research Working Paper Series 1726, The World Bank.
    10. Pfaff, Alexander S. P., 1999. "What Drives Deforestation in the Brazilian Amazon?: Evidence from Satellite and Socioeconomic Data," Journal of Environmental Economics and Management, Elsevier, vol. 37(1), pages 26-43, January.
    11. Butler, J S & Moffitt, Robert, 1982. "A Computationally Efficient Quadrature Procedure for the One-Factor Multinomial Probit Model," Econometrica, Econometric Society, vol. 50(3), pages 761-764, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessandro De Pinto & Gerald C. Nelson, 2007. "Modelling Deforestation and Land‐Use Change: Sparse Data Environments," Journal of Agricultural Economics, Wiley Blackwell, vol. 58(3), pages 502-516, September.
    2. Man Li & JunJie Wu & Xiangzheng Deng, 2013. "Identifying Drivers of Land Use Change in China: A Spatial Multinomial Logit Model Analysis," Land Economics, University of Wisconsin Press, vol. 89(4), pages 632-654.
    3. Daniel Müller & Darla K. Munroe, 2005. "Tradeoffs between Rural Development Policies and Forest Protection: Spatially Explicit Modeling in the Central Highlands of Vietnam," Land Economics, University of Wisconsin Press, vol. 81(3).
    4. Vance, Colin & Geoghegan, Jacqueline, 2002. "Temporal and spatial modelling of tropical deforestation: a survival analysis linking satellite and household survey data," Agricultural Economics, Blackwell, vol. 27(3), pages 317-332, November.
    5. Allen Blackman & Beatriz Ávalos-Sartorio & Jeffrey Chow, 2012. "Land Cover Change in Agroforestry: Shade Coffee in El Salvador," Land Economics, University of Wisconsin Press, vol. 88(1), pages 75-101.
    6. Nelson, Gerald C. & Geoghegan, Jacqueline, 2002. "Deforestation and land use change: sparse data environments," Agricultural Economics, Blackwell, vol. 27(3), pages 201-216, November.
    7. Robalino, Juan A. & Pfaff, Alexander, 2012. "Contagious development: Neighbor interactions in deforestation," Journal of Development Economics, Elsevier, vol. 97(2), pages 427-436.
    8. Lewis, David J., 2010. "An economic framework for forecasting land-use and ecosystem change," Resource and Energy Economics, Elsevier, vol. 32(2), pages 98-116, April.
    9. Sandler, Austin M. & Rashford, Benjamin S., 2018. "Misclassification error in satellite imagery data: Implications for empirical land-use models," Land Use Policy, Elsevier, vol. 75(C), pages 530-537.
    10. Kalifi Ferretti-Gallon and Jonah Busch, 2014. "What Drives Deforestation and What Stops It? A Meta-Analysis of Spatially Explicit Econometric Studies - Working Paper 361," Working Papers 361, Center for Global Development.
    11. Lewis, David J. & Plantinga, Andrew J., 2004. "Policies To Reduce Forest Fragmentation: Combining Econometric Models With Gis-Based Landscape Simulations," 2004 Annual meeting, August 1-4, Denver, CO 19910, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    12. Munroe, Darla K. & Southworth, Jane & Tucker, Catherine M., 2002. "The dynamics of land-cover change in western Honduras: exploring spatial and temporal complexity," Agricultural Economics, Blackwell, vol. 27(3), pages 355-369, November.
    13. Alix-Garcia, Jennifer, 2007. "A spatial analysis of common property deforestation," Journal of Environmental Economics and Management, Elsevier, vol. 53(2), pages 141-157, March.
    14. Levente Tímár, 2011. "Rural Land Use and Land Tenure in New Zealand," Working Papers 11_13, Motu Economic and Public Policy Research.
    15. Sims, Katharine R.E., 2010. "Conservation and development: Evidence from Thai protected areas," Journal of Environmental Economics and Management, Elsevier, vol. 60(2), pages 94-114, September.
    16. I.J. Bateman & A.P. Jones & A.A. Lovett & I.R. Lake & B.H. Day, 2002. "Applying Geographical Information Systems (GIS) to Environmental and Resource Economics," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 22(1), pages 219-269, June.
    17. Xie, Yang & Zilberman, David, 2015. "Water Storage Capacities versus Water Use Efficiency: Substitutes or Complements?," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205439, Agricultural and Applied Economics Association.
    18. Claudio Ferraz, 2015. "Explaining Agriculture Expansion and Deforestation: Evidence from the Brazilian Amazon – 1980/98," Discussion Papers 0106, Instituto de Pesquisa Econômica Aplicada - IPEA.
    19. Alessandro Pinto & Gerald C. Nelson, 2009. "Land Use Change with Spatially Explicit Data: A Dynamic Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 43(2), pages 209-229, June.
    20. Elena G. Irwin, 2010. "New Directions For Urban Economic Models Of Land Use Change: Incorporating Spatial Dynamics And Heterogeneity," Journal of Regional Science, Wiley Blackwell, vol. 50(1), pages 65-91, February.

    More about this item

    Keywords

    Resource /Energy Economics and Policy;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea03:22123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.