Advanced Search
MyIDEAS: Login

Nonparametric Filtering of the Realised Spot Volatility: A Kernel-based Approach

Contents:

Author Info

  • Dennis Kristensen

    ()
    (School of Economics and Management, University of Aarhus, Denmark)

Abstract

A kernel weighted version of the standard realised integrated volatility es- timator is proposed. By different choices of the kernel and bandwidth, the measure allows us to focus on specific characteristics of the volatility process. In particular, as the bandwidth vanishes, an estimator of the realised spot volatility is obtained. We denote this the filtered spot volatility. We show con- sistency and asymptotic normality of the kernel smoothed realised volatility and the filtered spot volatility. The choice of bandwidth is discussed and data- driven selection methods proposed. A simulation study examines the finite sample properties of the estimators.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: ftp://ftp.econ.au.dk/creates/rp/07/rp07_02.pdf
Download Restriction: no

Bibliographic Info

Paper provided by School of Economics and Management, University of Aarhus in its series CREATES Research Papers with number 2007-02.

as in new window
Length: 33
Date of creation: 11 May 2007
Date of revision:
Handle: RePEc:aah:create:2007-02

Contact details of provider:
Web page: http://www.econ.au.dk/afn/

Related research

Keywords: Diffusion; in-fill asymptotics; kernel estimation; nonparametric; spot volatility; realised volatility;

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," NBER Working Papers 8160, National Bureau of Economic Research, Inc.
  2. Merton, Robert C., 1980. "On estimating the expected return on the market : An exploratory investigation," Journal of Financial Economics, Elsevier, vol. 8(4), pages 323-361, December.
  3. Bertsimas, Dimitris & Kogan, Leonid & Lo, Andrew W., 2000. "When is time continuous?," Journal of Financial Economics, Elsevier, vol. 55(2), pages 173-204, February.
  4. Tim Bollerslev & Hao Zhou, 2001. "Estimating stochastic volatility diffusion using conditional moments of integrated volatility," Finance and Economics Discussion Series 2001-49, Board of Governors of the Federal Reserve System (U.S.).
  5. Reno, Roberto, 2006. "Nonparametric estimation of stochastic volatility models," Economics Letters, Elsevier, vol. 90(3), pages 390-395, March.
  6. Federico M. Bandi & Peter C.B. Phillips, 2001. "Fully Nonparametric Estimation of Scalar Diffusion Models," Cowles Foundation Discussion Papers 1332, Cowles Foundation for Research in Economics, Yale University.
  7. Jones, Christopher S., 2003. "The dynamics of stochastic volatility: evidence from underlying and options markets," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 181-224.
  8. Werker, B.J.M. & Drost, F.C., 1996. "Closing the GARCH gap: Continuous time GARCH modeling," Open Access publications from Tilburg University urn:nbn:nl:ui:12-72561, Tilburg University.
  9. Neil Shephard, 2005. "Limit theorems for bipower variation in financial econometrics," Economics Series Working Papers 2005-FE-09, University of Oxford, Department of Economics.
  10. Foster, Dean P & Nelson, Daniel B, 1996. "Continuous Record Asymptotics for Rolling Sample Variance Estimators," Econometrica, Econometric Society, vol. 64(1), pages 139-74, January.
  11. Andersen, Torben G. & Lund, Jesper, 1997. "Estimating continuous-time stochastic volatility models of the short-term interest rate," Journal of Econometrics, Elsevier, vol. 77(2), pages 343-377, April.
  12. Barucci, Emilio & Reno, Roberto, 2002. "On measuring volatility of diffusion processes with high frequency data," Economics Letters, Elsevier, vol. 74(3), pages 371-378, February.
  13. Andersen, Torben G. & Bollerslev, Tim, 1997. "Intraday periodicity and volatility persistence in financial markets," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 115-158, June.
  14. D. Blanke, 2002. "Estimation of Local Smoothness Coefficients for Continuous Time Processes," Statistical Inference for Stochastic Processes, Springer, vol. 5(1), pages 65-93, January.
  15. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
  16. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
  17. Elena Andreou & Eric Ghysels, 2000. "Rolling-Sample Volatility Estimators: Some New Theoretical, Simulation and Empirical Results," CIRANO Working Papers 2000s-19, CIRANO.
  18. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2002. "Markov chain Monte Carlo methods for stochastic volatility models," Journal of Econometrics, Elsevier, vol. 108(2), pages 281-316, June.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Mark Podolskij & Mathieu Rosenbaum, 2011. "Testing the local volatility assumption: a statistical approach," CREATES Research Papers 2011-04, School of Economics and Management, University of Aarhus.
  2. Almut E. D. Veraart, 2010. "How precise is the finite sample approximation of the asymptotic distribution of realised variation measures in the presence of jumps?," CREATES Research Papers 2010-65, School of Economics and Management, University of Aarhus.
  3. Kris Boudt & Sébastien Laurent & Asger Lunde & Rogier Quaedvlieg, 2014. "Positive Semidefinite Integrated Covariance Estimation, Factorizations and Asynchronicity," CREATES Research Papers 2014-05, School of Economics and Management, University of Aarhus.
  4. Selma Chaker, 2013. "Volatility and Liquidity Costs," Working Papers 13-29, Bank of Canada.
  5. Andrew Ang & Dennis Kristensen, 2011. "Testing Conditional Factor Models," NBER Working Papers 17561, National Bureau of Economic Research, Inc.
  6. Morten L Bech & Yvan Lengwiler, 2012. "The financial crisis and the changing dynamics of the yield curve," BIS Papers chapters, in: Bank for International Settlements (ed.), Threat of fiscal dominance?, volume 65, pages 257-276 Bank for International Settlements.
  7. Bandi, Federico & Corradi, Valentina & Moloche, Guillermo, 2009. "Bandwidth selection for continuous-time Markov processes," MPRA Paper 43682, University Library of Munich, Germany.
  8. Sujin Park & Oliver Linton, 2012. "Estimating the Quadratic Covariation Matrix for an Asynchronously Observed Continuous Time Signal Masked by Additive Noise," FMG Discussion Papers dp703, Financial Markets Group.
  9. Isabel Casas & Irene Gijbels, 2009. "Unstable volatility functions: the break preserving local linear estimator," CREATES Research Papers 2009-48, School of Economics and Management, University of Aarhus.
  10. Fulvio Corsi & Davide Pirino & Roberto Renò, 2008. "Volatility forecasting: the jumps do matter," Department of Economics University of Siena 534, Department of Economics, University of Siena.
  11. Cecilia Mancini & Vanessa Mattiussi & Roberto Reno', 2012. "Spot Volatility Estimation Using Delta Sequences," Working Papers - Mathematical Economics 2012-10, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
  12. Kalnina, Ilze, 2011. "Subsampling high frequency data," Journal of Econometrics, Elsevier, vol. 161(2), pages 262-283, April.
  13. Boudt, Kris & Cornelissen, Jonathan & Croux, Christophe, 2012. "Jump robust daily covariance estimation by disentangling variance and correlation components," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 2993-3005.
  14. Dennis Kristensen, 2008. "Uniform Convergence Rates of Kernel Estimators with Heterogenous, Dependent Data," CREATES Research Papers 2008-37, School of Economics and Management, University of Aarhus.
  15. Nikolay Gospodinov & Masayuki Hirukawa, 2008. "Nonparametric Estimation of Scalar Diffusion Processes of Interest Rates Using Asymmetric Kernels," Working Papers 08011, Concordia University, Department of Economics, revised Dec 2008.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:aah:create:2007-02. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.