IDEAS home Printed from https://ideas.repec.org/a/zbw/espost/222463.html
   My bibliography  Save this article

Lessons from Modeling 100% Renewable Scenarios Using GENeSYS-MOD

Author

Listed:
  • Oei, Pao-Yu
  • Burandt, Thorsten
  • Hainsch, Karlo
  • Löffler, Konstantin
  • Kemfert, Claudia

Abstract

The main aim of models has never been to provide numbers, but insights. Still, challenges prevail for modelers to use the best configuration of their models to provide helpful insights. In the case of energy system modelling, this becomes even more complicated due to increasing complexity of the energy system transition through the potential and need for sector coupling. This paper therefore showcases specific characteristics and challenges for energy system modelling of 100% renewable scenarios. The findings are based on various applications and modifications of the framework GENeSYS-MOD examining different regional characteristics for high renewable configurations in the world, China, India, South-Africa, Mexico, Europe, Germany, and Colombia. The paper elaborates on our experiences of the last years of choosing the best, yet still computable, configuration of GENeSYS-MOD with respect to spatial and time resolution as well as sufficient detailed description of the energy system transition effects. The aim of this paper is therefore twofold, to better understand and interpret existing models as well as to improve future modeling exercises.

Suggested Citation

  • Oei, Pao-Yu & Burandt, Thorsten & Hainsch, Karlo & Löffler, Konstantin & Kemfert, Claudia, 2020. "Lessons from Modeling 100% Renewable Scenarios Using GENeSYS-MOD," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 9(1), pages 103-120.
  • Handle: RePEc:zbw:espost:222463
    DOI: 10.5547/2160-5890.9.1.poei
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/222463/1/Oei_2020_Lessons%20Modelling%20Renewable.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.5547/2160-5890.9.1.poei?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Heard, B.P. & Brook, B.W. & Wigley, T.M.L. & Bradshaw, C.J.A., 2017. "Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1122-1133.
    2. Hess, Denis & Wetzel, Manuel & Cao, Karl-Kiên, 2018. "Representing node-internal transmission and distribution grids in energy system models," Renewable Energy, Elsevier, vol. 119(C), pages 874-890.
    3. Stognief, Nora & Walk, Paula & Schöttker, Oliver & Oei, Pao-Yu, 2019. "Economic Resilience of German Lignite Regions in Transition," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 11(21).
    4. Florian Egli & Bjarne Steffen & Tobias S. Schmidt, 2019. "Bias in energy system models with uniform cost of capital assumption," Nature Communications, Nature, vol. 10(1), pages 1-3, December.
    5. Huntington, Hillard G & Weyant, John P & Sweeney, James L, 1982. "Modeling for insights, not numbers: the experiences of the energy modeling forum," Omega, Elsevier, vol. 10(5), pages 449-462.
    6. Heuberger, Clara F. & Rubin, Edward S. & Staffell, Iain & Shah, Nilay & Mac Dowell, Niall, 2017. "Power capacity expansion planning considering endogenous technology cost learning," Applied Energy, Elsevier, vol. 204(C), pages 831-845.
    7. Peter J. Loftus & Armond M. Cohen & Jane C. S. Long & Jesse D. Jenkins, 2015. "A critical review of global decarbonization scenarios: what do they tell us about feasibility?," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 6(1), pages 93-112, January.
    8. Karlo Hainsch & Thorsten Burandt & Claudia Kemfert & Konstantin Löffler & Pao-Yu Oei & Christian von Hirschhausen, 2018. "Emission Pathways Towards a Low-Carbon Energy System for Europe: A Model-Based Analysis of Decarbonization Scenarios," Discussion Papers of DIW Berlin 1745, DIW Berlin, German Institute for Economic Research.
    9. Lechtenböhmer, Stefan & Nilsson, Lars J. & Åhman, Max & Schneider, Clemens, 2016. "Decarbonising the energy intensive basic materials industry through electrification – Implications for future EU electricity demand," Energy, Elsevier, vol. 115(P3), pages 1623-1631.
    10. Unknown, 2016. "Energy for Sustainable Development," Conference Proceedings 253270, Guru Arjan Dev Institute of Development Studies (IDSAsr).
    11. Welsch, Manuel & Deane, Paul & Howells, Mark & Ó Gallachóir, Brian & Rogan, Fionn & Bazilian, Morgan & Rogner, Hans-Holger, 2014. "Incorporating flexibility requirements into long-term energy system models – A case study on high levels of renewable electricity penetration in Ireland," Applied Energy, Elsevier, vol. 135(C), pages 600-615.
    12. Christian von Hirschhausen & Johannes Herold & Pao-Yu Oei, 2012. "How a "Low Carbon" Innovation Can Fail--Tales from a "Lost Decade" for Carbon Capture, Transport, and Sequestration (CCTS)," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    13. Löffler, Konstantin & Burandt, Thorsten & Hainsch, Karlo & Oei, Pao-Yu, 2019. "Modeling the low-carbon transition of the European energy system - A quantitative assessment of the stranded assets problem," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 26, pages 1-15.
    14. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    15. Burandt, Thorsten & Xiong, Bobby & Löffler, Konstantin & Oei, Pao-Yu, 2019. "Decarbonizing China’s energy system – Modeling the transformation of the electricity, transportation, heat, and industrial sectors," Applied Energy, Elsevier, vol. 255(C).
    16. Diesendorf, Mark & Elliston, Ben, 2018. "The feasibility of 100% renewable electricity systems: A response to critics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 318-330.
    17. Poncelet, Kris & Delarue, Erik & Six, Daan & Duerinck, Jan & D’haeseleer, William, 2016. "Impact of the level of temporal and operational detail in energy-system planning models," Applied Energy, Elsevier, vol. 162(C), pages 631-643.
    18. Luis Sarmiento & Thorsten Burandt & Konstantin Löffler & Pao-Yu Oei, 2019. "Analyzing Scenarios for the Integration of Renewable Energy Sources in the Mexican Energy System—An Application of the Global Energy System Model (GENeSYS-MOD)," Energies, MDPI, vol. 12(17), pages 1-24, August.
    19. Haydt, Gustavo & Leal, Vítor & Pina, André & Silva, Carlos A., 2011. "The relevance of the energy resource dynamics in the mid/long-term energy planning models," Renewable Energy, Elsevier, vol. 36(11), pages 3068-3074.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leonard Goke & Jens Weibezahn & Christian von Hirschhausen, 2021. "A collective blueprint, not a crystal ball: How expectations and participation shape long-term energy scenarios," Papers 2112.04821, arXiv.org, revised Dec 2022.
    2. Burandt, Thorsten, 2021. "Analyzing the necessity of hydrogen imports for net-zero emission scenarios in Japan," Applied Energy, Elsevier, vol. 298(C).
    3. Claudia Kemfert, 2021. "A Real Chance for the Transatlantic Partnership on Climate Policy," Intereconomics: Review of European Economic Policy, Springer;ZBW - Leibniz Information Centre for Economics;Centre for European Policy Studies (CEPS), vol. 56(1), pages 20-22, January.
    4. Löffler, Konstantin & Burandt, Thorsten & Hainsch, Karlo & Oei, Pao-Yu & Seehaus, Frederik & Wejda, Felix, 2022. "Chances and barriers for Germany's low carbon transition - Quantifying uncertainties in key influential factors," Energy, Elsevier, vol. 239(PA).
    5. Oei, Pao-Yu & Hermann, Hauke & Herpich, Philipp & Holtemöller, Oliver & Lünenbürger, Benjamin & Schult, Christoph, 2020. "Coal phase-out in Germany – Implications and policies for affected regions," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 196.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Papadis, Elisa & Tsatsaronis, George, 2020. "Challenges in the decarbonization of the energy sector," Energy, Elsevier, vol. 205(C).
    2. Plazas-Niño, F.A. & Ortiz-Pimiento, N.R. & Montes-Páez, E.G., 2022. "National energy system optimization modelling for decarbonization pathways analysis: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    3. Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2020. "Reviewing energy system modelling of decentralized energy autonomy," Energy, Elsevier, vol. 203(C).
    4. Oei, Pao-Yu & Hermann, Hauke & Herpich, Philipp & Holtemöller, Oliver & Lünenbürger, Benjamin & Schult, Christoph, 2020. "Coal phase-out in Germany – Implications and policies for affected regions," Energy, Elsevier, vol. 196(C).
    5. Bartholdsen, Hans-Karl & Eidens, Anna & Löffler, Konstantin & Seehaus, Frederik & Wejda, Felix & Burandt, Thorsten & Oei, Pao-Yu & Kemfert, Claudia & Hirschhausen, Christian von, 2019. "Pathways for Germany's Low-Carbon Energy Transformation Towards 2050," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 12(15), pages 1-33.
    6. Yue, Xiufeng & Patankar, Neha & Decarolis, Joseph & Chiodi, Alessandro & Rogan, Fionn & Deane, J.P. & O’Gallachoir, Brian, 2020. "Least cost energy system pathways towards 100% renewable energy in Ireland by 2050," Energy, Elsevier, vol. 207(C).
    7. Mertens, Tim & Poncelet, Kris & Duerinck, Jan & Delarue, Erik, 2020. "Representing cross-border trade of electricity in long-term energy-system optimization models with a limited geographical scope," Applied Energy, Elsevier, vol. 261(C).
    8. ElSayed, Mai & Aghahosseini, Arman & Breyer, Christian, 2023. "High cost of slow energy transitions for emerging countries: On the case of Egypt's pathway options," Renewable Energy, Elsevier, vol. 210(C), pages 107-126.
    9. Ignacio Mauleón, 2020. "Economic Issues in Deep Low-Carbon Energy Systems," Energies, MDPI, vol. 13(16), pages 1-32, August.
    10. Burandt, Thorsten, 2021. "Analyzing the necessity of hydrogen imports for net-zero emission scenarios in Japan," Applied Energy, Elsevier, vol. 298(C).
    11. Siala, Kais & Mier, Mathias & Schmidt, Lukas & Torralba-Díaz, Laura & Sheykhha, Siamak & Savvidis, Georgios, 2022. "Which model features matter? An experimental approach to evaluate power market modeling choices," Energy, Elsevier, vol. 245(C).
    12. Prina, Matteo Giacomo & Manzolini, Giampaolo & Moser, David & Nastasi, Benedetto & Sparber, Wolfram, 2020. "Classification and challenges of bottom-up energy system models - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    13. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Seljom, Pernille & Lind, Arne & Wagner, Fabian & Mesfun, Sennai, 2020. "Short-term solar and wind variability in long-term energy system models - A European case study," Energy, Elsevier, vol. 209(C).
    14. Thomas Heggarty & Jean-Yves Bourmaud & Robin Girard & Georges Kariniotakis, 2024. "Assessing the relative impacts of maximum investment rate and temporal detail in capacity expansion models applied to power systems," Post-Print hal-04383397, HAL.
    15. Lu, Bin & Blakers, Andrew & Stocks, Matthew & Do, Thang Nam, 2021. "Low-cost, low-emission 100% renewable electricity in Southeast Asia supported by pumped hydro storage," Energy, Elsevier, vol. 236(C).
    16. Collins, Seán & Deane, John Paul & Poncelet, Kris & Panos, Evangelos & Pietzcker, Robert C. & Delarue, Erik & Ó Gallachóir, Brian Pádraig, 2017. "Integrating short term variations of the power system into integrated energy system models: A methodological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 839-856.
    17. Osorio-Aravena, Juan Carlos & Aghahosseini, Arman & Bogdanov, Dmitrii & Caldera, Upeksha & Ghorbani, Narges & Mensah, Theophilus Nii Odai & Khalili, Siavash & Muñoz-Cerón, Emilio & Breyer, Christian, 2021. "The impact of renewable energy and sector coupling on the pathway towards a sustainable energy system in Chile," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    18. Göke, Leonard, 2021. "A graph-based formulation for modeling macro-energy systems," Applied Energy, Elsevier, vol. 301(C).
    19. Fattahi, A. & Sijm, J. & Faaij, A., 2020. "A systemic approach to analyze integrated energy system modeling tools: A review of national models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    20. Löffler, Konstantin & Burandt, Thorsten & Hainsch, Karlo & Oei, Pao-Yu, 2019. "Modeling the low-carbon transition of the European energy system - A quantitative assessment of the stranded assets problem," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 26, pages 1-15.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:espost:222463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/zbwkide.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.