IDEAS home Printed from https://ideas.repec.org/a/zbw/espost/121951.html
   My bibliography  Save this article

The Role of Innovative Development in Unconventional Hydrocarbon Exploitation in the Context of the Shale Gas Revolution in the USA

Author

Listed:
  • Grinets, Irina
  • Kaznachev, Peter

Abstract

Due to the recent drop in oil prices, there is a strong interest in the influence of the shale revolution on the global supply and demand of hydrocarbon fuels. Consequently, the attention of many economists and industry analysts is drawn to the technological, institutional and regulatory aspects of hydrocarbon production from shale deposits in the USA. The authors analyze factors facilitating the shale gas revolution in the USA, and find that in addition to the obvious factors, such as high prices for gas at the beginning of the 2000s, an important underlying factor was the high level of institutional development in the USA. This was characterized by a legal system that recognized property rights in mineral resources, the existence of a wide variety of business entities operating in the oil and gas sector (including small businesses), and a favorable tax regime. The article presents the results of econometric modeling that traces the USA’s transition from almost exclusively extracting conventional gas to the extraction of unconventional gas.

Suggested Citation

  • Grinets, Irina & Kaznachev, Peter, 2014. "The Role of Innovative Development in Unconventional Hydrocarbon Exploitation in the Context of the Shale Gas Revolution in the USA," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 39(4), pages 436-466.
  • Handle: RePEc:zbw:espost:121951
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/121951/1/kazn02.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Owen, Nick A. & Inderwildi, Oliver R. & King, David A., 2010. "The status of conventional world oil reserves--Hype or cause for concern?," Energy Policy, Elsevier, vol. 38(8), pages 4743-4749, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sonia Benghida & Djamil Benghida, 2018. "Facts From The Contango Situation Of Gas And Oil Markets," Post-Print hal-01696522, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Atanu Ghoshray & Issam Malki, 2021. "The share of the global energy mix: Signs of convergence?," Bulletin of Economic Research, Wiley Blackwell, vol. 73(1), pages 34-50, January.
    2. Desmond Batsa Dorhjie & Elena Mukhina & Anton Kasyanenko & Alexey Cheremisin, 2023. "Tight and Shale Oil Exploration: A Review of the Global Experience and a Case of West Siberia," Energies, MDPI, vol. 16(18), pages 1-28, September.
    3. Malik Curuk & Suphi Sen, 2023. "Climate Policy and Resource Extraction with Variable Markups and Imperfect Substitutes," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 10(4), pages 1091-1120.
    4. Grinets, Irina & Kaznacheev, Peter, 2014. "The Role of Innovative Development in Unconventional Hydrocarbon Exploitation in the Context of the Shale Gas Revolution in the USA," Published Papers kazn02, Russian Presidential Academy of National Economy and Public Administration.
    5. Dahl, Roy Endré & Lorentzen, Sindre & Oglend, Atle & Osmundsen, Petter, 2017. "Pro-cyclical petroleum investments and cost overruns in Norway," Energy Policy, Elsevier, vol. 100(C), pages 68-78.
    6. Jashim Uddin Ahmed & Hafiza Sultana & Md. Muinuddin Khan, 2018. "Saudi Aramco: A Blend between Profit and Politics," FIIB Business Review, , vol. 7(2), pages 88-99, June.
    7. Santagata, R. & Ripa, M. & Ulgiati, S., 2017. "An environmental assessment of electricity production from slaughterhouse residues. Linking urban, industrial and waste management systems," Applied Energy, Elsevier, vol. 186(P2), pages 175-188.
    8. Yang, Guangfei & Li, Xianneng & Wang, Jianliang & Lian, Lian & Ma, Tieju, 2015. "Modeling oil production based on symbolic regression," Energy Policy, Elsevier, vol. 82(C), pages 48-61.
    9. Warrilow, David, 2015. "A bumpy road to the top: Statistically defining a peak in oil production," Energy Policy, Elsevier, vol. 82(C), pages 81-84.
    10. Jaume Belles‐Sampera & Montserrat Guillén & Miguel Santolino, 2014. "Beyond Value‐at‐Risk: GlueVaR Distortion Risk Measures," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 121-134, January.
    11. Kirk Hamilton & Giles Atkinson, 2013. "Resource Discoveries, Learning and National Income Accounting," GRI Working Papers 117, Grantham Research Institute on Climate Change and the Environment.
    12. Pablo Druetta & Francesco Picchioni, 2019. "Simulation of Surfactant Oil Recovery Processes and the Role of Phase Behaviour Parameters," Energies, MDPI, vol. 12(6), pages 1-30, March.
    13. Kunwar, Bidhya & Cheng, H.N. & Chandrashekaran, Sriram R & Sharma, Brajendra K, 2016. "Plastics to fuel: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 421-428.
    14. Talal AL-Bazali & Mohammad Al-Zuhair, 2022. "The Use of Fuzzy Logic to Assess Sustainability of Oil and Gas Resources (R/P): Technical, Economic and Political Perspectives," International Journal of Energy Economics and Policy, Econjournals, vol. 12(2), pages 449-458, March.
    15. Chapman, Ian, 2014. "The end of Peak Oil? Why this topic is still relevant despite recent denials," Energy Policy, Elsevier, vol. 64(C), pages 93-101.
    16. Chavez-Rodriguez, Mauro F. & Szklo, Alexandre & de Lucena, Andre Frossard Pereira, 2015. "Analysis of past and future oil production in Peru under a Hubbert approach," Energy Policy, Elsevier, vol. 77(C), pages 140-151.
    17. Lin, Boqiang & Wang, Ting, 2012. "Forecasting natural gas supply in China: Production peak and import trends," Energy Policy, Elsevier, vol. 49(C), pages 225-233.
    18. Enang, Wisdom & Bannister, Chris, 2017. "Modelling and control of hybrid electric vehicles (A comprehensive review)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1210-1239.
    19. Speirs, Jamie & McGlade, Christophe & Slade, Raphael, 2015. "Uncertainty in the availability of natural resources: Fossil fuels, critical metals and biomass," Energy Policy, Elsevier, vol. 87(C), pages 654-664.
    20. McGlade, C.E., 2012. "A review of the uncertainties in estimates of global oil resources," Energy, Elsevier, vol. 47(1), pages 262-270.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:espost:121951. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/zbwkide.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.