IDEAS home Printed from https://ideas.repec.org/a/wsi/ijtafx/v19y2016i02ns0219024916500084.html
   My bibliography  Save this article

Numerical Analysis On Local Risk-Minimization For Exponential Lévy Models

Author

Listed:
  • TAKUJI ARAI

    (Department of Economics, Keio University, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan)

  • YUTO IMAI

    (Department of Mathematics, Waseda University, 3-4-1 Okubo, Shinjyuku-ku, Tokyo 169-8555, Japan)

  • RYOICHI SUZUKI

    (Department of Mathematics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan)

Abstract

We illustrate how to compute local risk minimization (LRM) of call options for exponential Lévy models. Here, LRM is a popular hedging method through a quadratic criterion for contingent claims in incomplete markets. Arai & Suzuki (2015) have previously obtained a representation of LRM for call options; here we transform it into a form that allows use of the fast Fourier transform (FFT) method suggested by by Carr & Madan (1999). Considering Merton jump-diffusion models and variance gamma models as typical examples of exponential Lévy models, we provide the forms for the FFT explicitly; and compute the values of LRM numerically for given parameter sets. Furthermore, we illustrate numerical results for a variance gamma model with estimated parameters from the Nikkei 225 index.

Suggested Citation

  • Takuji Arai & Yuto Imai & Ryoichi Suzuki, 2016. "Numerical Analysis On Local Risk-Minimization For Exponential Lévy Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(02), pages 1-27, March.
  • Handle: RePEc:wsi:ijtafx:v:19:y:2016:i:02:n:s0219024916500084
    DOI: 10.1142/S0219024916500084
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219024916500084
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219024916500084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dilip B. Madan & Peter P. Carr & Eric C. Chang, 1998. "The Variance Gamma Process and Option Pricing," Review of Finance, European Finance Association, vol. 2(1), pages 79-105.
    2. Jose Scheinkman & René Carmona & Erhan Cinlare & Ivar Ekeland & Elyès Jouini & Nizar Touzi, 2010. "Paris-Princeton Lectures on Mathematical Finance," Post-Print halshs-00706281, HAL.
    3. Takuji Arai & Ryoichi Suzuki, 2015. "Local risk-minimization for Lévy markets," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 2(02), pages 1-28.
    4. Ewald, Christian-Oliver & Nawar, Roy & Siu, Tak Kuen, 2013. "Minimal variance hedging of natural gas derivatives in exponential Lévy models: Theory and empirical performance," Energy Economics, Elsevier, vol. 36(C), pages 97-107.
    5. P. Leoni & N. Vandaele & M. Vanmaele, 2014. "Hedging strategies for energy derivatives," Quantitative Finance, Taylor & Francis Journals, vol. 14(10), pages 1725-1737, October.
    6. Jouini,E. & Cvitanic,J. & Musiela,Marek (ed.), 2001. "Handbooks in Mathematical Finance," Cambridge Books, Cambridge University Press, number 9780521792370.
    7. Abdou Kélani & François Quittard-Pinon, 2014. "Pricing, Hedging and Assessing Risk in a General Lévy Context," Bankers, Markets & Investors, ESKA Publishing, issue 131, pages 30-42, July-Augu.
    8. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    9. Kiseop Lee & Seongjoo Song, 2007. "Insiders' hedging in a jump diffusion model," Quantitative Finance, Taylor & Francis Journals, vol. 7(5), pages 537-545.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Takuji Arai & Yuto Imai & Ryoichi Suzuki, 2017. "Local risk-minimization for Barndorff-Nielsen and Shephard models," Finance and Stochastics, Springer, vol. 21(2), pages 551-592, April.
    2. Takuji Arai & Yuto Imai & Ryo Nakashima, 2018. "Numerical analysis on quadratic hedging strategies for normal inverse Gaussian models," Papers 1801.05597, arXiv.org.
    3. Takuji Arai, 2019. "Pricing And Hedging Of Vix Options For Barndorff-Nielsen And Shephard Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(08), pages 1-26, December.
    4. Takuji Arai & Ryoichi Suzuki, 2019. "A Clark-Ocone type formula via Ito calculus and its application to finance," Papers 1906.06648, arXiv.org.
    5. Takuji Arai, 2019. "Pricing and hedging of VIX options for Barndorff-Nielsen and Shephard models," Papers 1904.12260, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takuji Arai & Yuto Imai & Ryoichi Suzuki, 2015. "Numerical analysis on local risk-minimization forexponential L\'evy models," Papers 1506.03898, arXiv.org.
    2. Wei Wang & Linyi Qian & Wensheng Wang, 2016. "Hedging of contingent claims written on non traded assets under Markov-modulated models," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(12), pages 3577-3595, June.
    3. Ewald, Christian-Oliver & Nawar, Roy & Siu, Tak Kuen, 2013. "Minimal variance hedging of natural gas derivatives in exponential Lévy models: Theory and empirical performance," Energy Economics, Elsevier, vol. 36(C), pages 97-107.
    4. Alev{s} v{C}ern'y & Stephan Denkl & Jan Kallsen, 2013. "Hedging in L\'evy Models and the Time Step Equivalent of Jumps," Papers 1309.7833, arXiv.org, revised Jul 2017.
    5. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    6. Yeap, Claudia & Kwok, Simon S. & Choy, S. T. Boris, 2016. "A Flexible Generalised Hyperbolic Option Pricing Model and its Special Cases," Working Papers 2016-14, University of Sydney, School of Economics.
    7. Jose Cruz & Daniel Sevcovic, 2020. "On solutions of a partial integro-differential equation in Bessel potential spaces with applications in option pricing models," Papers 2003.03851, arXiv.org.
    8. Yongxin Yang & Yu Zheng & Timothy M. Hospedales, 2016. "Gated Neural Networks for Option Pricing: Rationality by Design," Papers 1609.07472, arXiv.org, revised Mar 2020.
    9. Lam, K. & Chang, E. & Lee, M. C., 2002. "An empirical test of the variance gamma option pricing model," Pacific-Basin Finance Journal, Elsevier, vol. 10(3), pages 267-285, June.
    10. Zura Kakushadze, 2016. "Volatility Smile as Relativistic Effect," Papers 1610.02456, arXiv.org, revised Feb 2017.
    11. Yacine Aït‐Sahalia, 2002. "Telling from Discrete Data Whether the Underlying Continuous‐Time Model Is a Diffusion," Journal of Finance, American Finance Association, vol. 57(5), pages 2075-2112, October.
    12. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    13. Martijn Pistorius & Johannes Stolte, 2012. "Fast computation of vanilla prices in time-changed models and implied volatilities using rational approximations," Papers 1203.6899, arXiv.org.
    14. Björn Lutz, 2010. "Pricing of Derivatives on Mean-Reverting Assets," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-02909-7, December.
    15. Geman, Helyette, 2002. "Pure jump Levy processes for asset price modelling," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1297-1316, July.
    16. Yishen Li & Jin Zhang, 2004. "Option pricing with Weyl-Titchmarsh theory," Quantitative Finance, Taylor & Francis Journals, vol. 4(4), pages 457-464.
    17. Junike, Gero & Pankrashkin, Konstantin, 2022. "Precise option pricing by the COS method—How to choose the truncation range," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    18. Kirkby, J. Lars & Nguyen, Duy, 2021. "Equity-linked Guaranteed Minimum Death Benefits with dollar cost averaging," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 408-428.
    19. Calvet, Laurent E. & Fisher, Adlai J., 2008. "Multifrequency jump-diffusions: An equilibrium approach," Journal of Mathematical Economics, Elsevier, vol. 44(2), pages 207-226, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:19:y:2016:i:02:n:s0219024916500084. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.