IDEAS home Printed from https://ideas.repec.org/a/wsi/ijitdm/v18y2019i05ns0219622019500196.html
   My bibliography  Save this article

An Efficient Decision-Making Approach for the Planning of Diagnostic Services in a Segmented Healthcare System

Author

Listed:
  • Rodolfo Mendoza-Gómez

    (Tecnológico de Monterrey, Campus Toluca, School of Engineering and Architecture, Av. Eduardo Monroy Cárdenas 2000, San Antonio Buenavista, Toluca 50110, Mexico)

  • Roger Z. Ríos-Mercado

    (Universidad Autónoma de Nuevo León (UANL), Graduate Program in Systems Engineering, AP 111–F, Cd. Universitaria, San Nicolás de los Garza, NL 66455, Mexico)

  • Karla B. Valenzuela-Ocaña

    (Tecnológico de Monterrey, Campus Toluca, Department of Industrial Engineering, Av. Eduardo Monroy Cárdenas 2000, San Antonio Buenavista, Toluca 50110, Mexico)

Abstract

In this paper, we address a decision-making problem related to the requirement of costly equipment by medical diagnostic services in a segmented public healthcare system comprising several institutions and private providers. The problem is motivated by a real-world case of the Mexican healthcare system. The aim of this study is to determine which hospitals can provide the service, their capacity levels, the allocation of demand in each institution, and the referral of patients to other institutions or private providers while minimizing annual investment costs and operating costs required to satisfy demand. A mixed-integer linear programming model that takes into account different characteristics such as patient acuity levels, types of equipment, and demand variation through time is introduced. The model was empirically assessed to evaluate its impact on the decision-making process. A sensitivity analysis to evaluate solution behavior for variations of critical parameters was performed. The results showed that some values could generate a significant effect on the total costs for the service coverage and in the efficiency of the service, whereas overall results indicated the usefulness of the model. While this model is valuable to aid this decision-making problem, it is limited to medium-size instances of up to 90 facilities. To solve the problems with larger instances, a two-phase heuristic algorithm is proposed. In the first phase, the method uses a greedy construction mechanism, and in the second phase, it attempts to improve the solution. Empirical evidence on large instances shows that good solutions with low computing times are reached in comparison with the exact method.

Suggested Citation

  • Rodolfo Mendoza-Gómez & Roger Z. Ríos-Mercado & Karla B. Valenzuela-Ocaña, 2019. "An Efficient Decision-Making Approach for the Planning of Diagnostic Services in a Segmented Healthcare System," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(05), pages 1631-1665, September.
  • Handle: RePEc:wsi:ijitdm:v:18:y:2019:i:05:n:s0219622019500196
    DOI: 10.1142/S0219622019500196
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219622019500196
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219622019500196?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mestre, Ana Maria & Oliveira, Mónica Duarte & Barbosa-Póvoa, Ana Paula, 2015. "Location–allocation approaches for hospital network planning under uncertainty," European Journal of Operational Research, Elsevier, vol. 240(3), pages 791-806.
    2. ReVelle, C. S. & Eiselt, H. A., 2005. "Location analysis: A synthesis and survey," European Journal of Operational Research, Elsevier, vol. 165(1), pages 1-19, August.
    3. Klose, Andreas & Drexl, Andreas, 2005. "Facility location models for distribution system design," European Journal of Operational Research, Elsevier, vol. 162(1), pages 4-29, April.
    4. Vikram Tiwari & H. Heese, 2009. "Specialization and competition in healthcare delivery networks," Health Care Management Science, Springer, vol. 12(3), pages 306-324, September.
    5. McLafferty, Sara & Broe, Daniel, 1990. "Patient outcomes and regional planning of coronary care services: A location-allocation approach," Social Science & Medicine, Elsevier, vol. 30(3), pages 297-304, January.
    6. Murray Côté & Siddhartha Syam & W. Vogel & Diane Cowper, 2007. "A mixed integer programming model to locate traumatic brain injury treatment units in the Department of Veterans Affairs: a case study," Health Care Management Science, Springer, vol. 10(3), pages 253-267, September.
    7. Martin Utley & Mark Jit & Steve Gallivan, 2008. "Restructuring routine elective services to reduce overall capacity requirements within a local health economy," Health Care Management Science, Springer, vol. 11(3), pages 240-247, September.
    8. R. Jean Ruth, 1981. "A Mixed Integer Programming Model for Regional Planning of a Hospital Inpatient Service," Management Science, INFORMS, vol. 27(5), pages 521-533, May.
    9. Thomas Rohleder & Diane Bischak & Leland Baskin, 2007. "Modeling patient service centers with simulation and system dynamics," Health Care Management Science, Springer, vol. 10(1), pages 1-12, February.
    10. G Royston, 2009. "One hundred years of Operational Research in Health—UK 1948–2048," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 169-179, May.
    11. Owen, Susan Hesse & Daskin, Mark S., 1998. "Strategic facility location: A review," European Journal of Operational Research, Elsevier, vol. 111(3), pages 423-447, December.
    12. Melo, M.T. & Nickel, S. & Saldanha-da-Gama, F., 2009. "Facility location and supply chain management - A review," European Journal of Operational Research, Elsevier, vol. 196(2), pages 401-412, July.
    13. ReVelle, C.S. & Eiselt, H.A. & Daskin, M.S., 2008. "A bibliography for some fundamental problem categories in discrete location science," European Journal of Operational Research, Elsevier, vol. 184(3), pages 817-848, February.
    14. Syam, Siddhartha S. & Côté, Murray J., 2010. "A location-allocation model for service providers with application to not-for-profit health care organizations," Omega, Elsevier, vol. 38(3-4), pages 157-166, June.
    15. Mahar, Stephen & Bretthauer, Kurt M. & Salzarulo, Peter A., 2011. "Locating specialized service capacity in a multi-hospital network," European Journal of Operational Research, Elsevier, vol. 212(3), pages 596-605, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bieniek, Milena, 2015. "A note on the facility location problem with stochastic demands," Omega, Elsevier, vol. 55(C), pages 53-60.
    2. Mestre, Ana Maria & Oliveira, Mónica Duarte & Barbosa-Póvoa, Ana Paula, 2015. "Location–allocation approaches for hospital network planning under uncertainty," European Journal of Operational Research, Elsevier, vol. 240(3), pages 791-806.
    3. Contreras, Ivan & Fernández, Elena & Reinelt, Gerhard, 2012. "Minimizing the maximum travel time in a combined model of facility location and network design," Omega, Elsevier, vol. 40(6), pages 847-860.
    4. Sanjay Jena & Jean-François Cordeau & Bernard Gendron, 2015. "Modeling and solving a logging camp location problem," Annals of Operations Research, Springer, vol. 232(1), pages 151-177, September.
    5. Dönmez, Zehranaz & Kara, Bahar Y. & Karsu, Özlem & Saldanha-da-Gama, Francisco, 2021. "Humanitarian facility location under uncertainty: Critical review and future prospects," Omega, Elsevier, vol. 102(C).
    6. Mendoza-Gómez, Rodolfo & Ríos-Mercado, Roger Z., 2022. "Regionalization of primary health care units with multi-institutional collaboration," Socio-Economic Planning Sciences, Elsevier, vol. 83(C).
    7. Ross, Anthony & Khajehnezhad, Milad & Otieno, Wilkistar & Aydas, Osman, 2017. "Integrated location-inventory modelling under forward and reverse product flows in the used merchandise retail sector: A multi-echelon formulation," European Journal of Operational Research, Elsevier, vol. 259(2), pages 664-676.
    8. Kress, Dominik & Pesch, Erwin, 2012. "Sequential competitive location on networks," European Journal of Operational Research, Elsevier, vol. 217(3), pages 483-499.
    9. Schuster Puga, Matías & Tancrez, Jean-Sébastien, 2017. "A heuristic algorithm for solving large location–inventory problems with demand uncertainty," European Journal of Operational Research, Elsevier, vol. 259(2), pages 413-423.
    10. Haase, Knut & Hoppe, Mirko, 2008. "Standortplanung unter Wettbewerb - Teil 1: Grundlagen," Discussion Papers 2/2008, Technische Universität Dresden, "Friedrich List" Faculty of Transport and Traffic Sciences, Institute of Transport and Economics.
    11. Cardoso, Teresa & Oliveira, Mónica Duarte & Barbosa-Póvoa, Ana & Nickel, Stefan, 2016. "Moving towards an equitable long-term care network: A multi-objective and multi-period planning approach," Omega, Elsevier, vol. 58(C), pages 69-85.
    12. Ashu Kedia & Diana Kusumastuti & Alan Nicholson, 2019. "Establishing Collection and Delivery Points to Encourage the Use of Active Transport: A Case Study in New Zealand Using a Consumer-Centric Approach," Sustainability, MDPI, vol. 11(22), pages 1-23, November.
    13. Schuster Puga, Matías & Minner, Stefan & Tancrez, Jean-Sébastien, 2019. "Two-stage supply chain design with safety stock placement decisions," International Journal of Production Economics, Elsevier, vol. 209(C), pages 183-193.
    14. Gross, Wendelin & Butz, Christian, 2014. "Design of Sustainable Transportation Networks," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Blecker, Thorsten & Ringle, Christian M. (ed.), Next Generation Supply Chains: Trends and Opportunities. Proceedings of the Hamburg International Conference of Logistics (HICL), Vol. 18, volume 18, pages 137-160, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    15. Benneyan, James C. & Musdal, Hande & Ceyhan, Mehmet Erkan & Shiner, Brian & Watts, Bradley V., 2012. "Specialty care single and multi-period location–allocation models within the Veterans Health Administration," Socio-Economic Planning Sciences, Elsevier, vol. 46(2), pages 136-148.
    16. Wu, Shanhua & Yang, Zhongzhen, 2018. "Locating manufacturing industries by flow-capturing location model – Case of Chinese steel industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 112(C), pages 1-11.
    17. Farahani, Reza Zanjirani & Fallah, Samira & Ruiz, Rubén & Hosseini, Sara & Asgari, Nasrin, 2019. "OR models in urban service facility location: A critical review of applications and future developments," European Journal of Operational Research, Elsevier, vol. 276(1), pages 1-27.
    18. Silva, Allyson & Aloise, Daniel & Coelho, Leandro C. & Rocha, Caroline, 2021. "Heuristics for the dynamic facility location problem with modular capacities," European Journal of Operational Research, Elsevier, vol. 290(2), pages 435-452.
    19. Derya Celik Turkoglu & Mujde Erol Genevois, 2020. "A comparative survey of service facility location problems," Annals of Operations Research, Springer, vol. 292(1), pages 399-468, September.
    20. Melo, M.T. & Nickel, S. & Saldanha-da-Gama, F., 2009. "Facility location and supply chain management - A review," European Journal of Operational Research, Elsevier, vol. 196(2), pages 401-412, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijitdm:v:18:y:2019:i:05:n:s0219622019500196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijitdm/ijitdm.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.