IDEAS home Printed from https://ideas.repec.org/a/wsi/apjorx/v33y2016i05ns0217595916500378.html
   My bibliography  Save this article

An Ordered Flow Shop with Two Agents

Author

Listed:
  • Byung-Cheon Choi

    (Department of Business Administration, Chungnam National University, 99 Daehangno, Yuseong-gu, Daejeon 34134, Korea)

  • Myoung-Ju Park

    (Department of Industrial and Management Systems Engineering, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Kyunggi-do 17104, Korea)

Abstract

In this paper, we consider a two-agent scheduling problem in an m-machine ordered flow shop where each agent is responsible for his own set of jobs and wishes to minimize the makespan. Since the problem is NP-hard, we develop a pseudo-polynomial time approach for the case with a fixed number of machines and investigate the conditions that make the problem polynomially solvable. Finally, we consider a three-machine problem with a special processing time structure, and demonstrate its polynomiality.

Suggested Citation

  • Byung-Cheon Choi & Myoung-Ju Park, 2016. "An Ordered Flow Shop with Two Agents," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(05), pages 1-24, October.
  • Handle: RePEc:wsi:apjorx:v:33:y:2016:i:05:n:s0217595916500378
    DOI: 10.1142/S0217595916500378
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0217595916500378
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0217595916500378?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wenchang Luo & Lin Chen & Guochuan Zhang, 2012. "Approximation schemes for two-machine flow shop scheduling with two agents," Journal of Combinatorial Optimization, Springer, vol. 24(3), pages 229-239, October.
    2. Mor, Baruch & Mosheiov, Gur, 2010. "Scheduling problems with two competing agents to minimize minmax and minsum earliness measures," European Journal of Operational Research, Elsevier, vol. 206(3), pages 540-546, November.
    3. Allesandro Agnetis & Pitu B. Mirchandani & Dario Pacciarelli & Andrea Pacifici, 2004. "Scheduling Problems with Two Competing Agents," Operations Research, INFORMS, vol. 52(2), pages 229-242, April.
    4. B Mor & G Mosheiov, 2014. "Polynomial time solutions for scheduling problems on a proportionate flowshop with two competing agents," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(1), pages 151-157, January.
    5. M. L. Smith & S. S. Panwalkar & R. A. Dudek, 1975. "Flowshop Sequencing Problem with Ordered Processing Time Matrices," Management Science, INFORMS, vol. 21(5), pages 544-549, January.
    6. Joseph Y.-T. Leung & Michael Pinedo & Guohua Wan, 2010. "Competitive Two-Agent Scheduling and Its Applications," Operations Research, INFORMS, vol. 58(2), pages 458-469, April.
    7. Yin, Yunqiang & Cheng, Shuenn-Ren & Cheng, T.C.E. & Wang, Du-Juan & Wu, Chin-Chia, 2016. "Just-in-time scheduling with two competing agents on unrelated parallel machines," Omega, Elsevier, vol. 63(C), pages 41-47.
    8. Alessandro Agnetis & Dario Pacciarelli & Andrea Pacifici, 2007. "Multi-agent single machine scheduling," Annals of Operations Research, Springer, vol. 150(1), pages 3-15, March.
    9. Nicholas G. Hall & Chris N. Potts, 2004. "Rescheduling for New Orders," Operations Research, INFORMS, vol. 52(3), pages 440-453, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Myoung-Ju Park & Byung-Cheon Choi & Yunhong Min & Kyung Min Kim, 2020. "Two-Machine Ordered Flow Shop Scheduling with Generalized Due Dates," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 37(01), pages 1-16, January.
    2. Byung-Gyoo Kim & Byung-Cheon Choi & Myoung-Ju Park, 2017. "Two-Machine and Two-Agent Flow Shop with Special Processing Times Structures," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(04), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Byung-Gyoo Kim & Byung-Cheon Choi & Myoung-Ju Park, 2017. "Two-Machine and Two-Agent Flow Shop with Special Processing Times Structures," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(04), pages 1-17, August.
    2. Shesh Narayan Sahu & Yuvraj Gajpal & Swapan Debbarma, 2018. "Two-agent-based single-machine scheduling with switchover time to minimize total weighted completion time and makespan objectives," Annals of Operations Research, Springer, vol. 269(1), pages 623-640, October.
    3. Perez-Gonzalez, Paz & Framinan, Jose M., 2014. "A common framework and taxonomy for multicriteria scheduling problems with interfering and competing jobs: Multi-agent scheduling problems," European Journal of Operational Research, Elsevier, vol. 235(1), pages 1-16.
    4. Baruch Mor & Gur Mosheiov, 2017. "A two-agent single machine scheduling problem with due-window assignment and a common flow-allowance," Journal of Combinatorial Optimization, Springer, vol. 33(4), pages 1454-1468, May.
    5. Yunqiang Yin & T. C. E. Cheng & Du-Juan Wang & Chin-Chia Wu, 2017. "Two-agent flowshop scheduling to maximize the weighted number of just-in-time jobs," Journal of Scheduling, Springer, vol. 20(4), pages 313-335, August.
    6. Byung-Cheon Choi & Myoung-Ju Park, 2020. "Scheduling two projects with controllable processing times in a single-machine environment," Journal of Scheduling, Springer, vol. 23(5), pages 619-628, October.
    7. Koulamas, Christos, 2015. "A note on scheduling problems with competing agents and earliness minimization objectives," European Journal of Operational Research, Elsevier, vol. 245(3), pages 875-876.
    8. Cheng, Shuenn-Ren, 2014. "Some new problems on two-agent scheduling to minimize the earliness costs," International Journal of Production Economics, Elsevier, vol. 156(C), pages 24-30.
    9. Xiaoling Cao & Wen-Hsing Wu & Wen-Hung Wu & Chin-Chia Wu, 2018. "Some two-agent single-machine scheduling problems to minimize minmax and minsum of completion times," Operational Research, Springer, vol. 18(2), pages 293-314, July.
    10. Shi-Sheng Li & Ren-Xia Chen & Qi Feng, 2016. "Scheduling two job families on a single machine with two competitive agents," Journal of Combinatorial Optimization, Springer, vol. 32(3), pages 784-799, October.
    11. Fan, B.Q. & Cheng, T.C.E., 2016. "Two-agent scheduling in a flowshop," European Journal of Operational Research, Elsevier, vol. 252(2), pages 376-384.
    12. Zhang, Xingong, 2021. "Two competitive agents to minimize the weighted total late work and the total completion time," Applied Mathematics and Computation, Elsevier, vol. 406(C).
    13. Nong, Q.Q. & Cheng, T.C.E. & Ng, C.T., 2011. "Two-agent scheduling to minimize the total cost," European Journal of Operational Research, Elsevier, vol. 215(1), pages 39-44, November.
    14. Ren-Xia Chen & Shi-Sheng Li, 2019. "Two-agent single-machine scheduling with cumulative deterioration," 4OR, Springer, vol. 17(2), pages 201-219, June.
    15. Omri Dover & Dvir Shabtay, 2016. "Single machine scheduling with two competing agents, arbitrary release dates and unit processing times," Annals of Operations Research, Springer, vol. 238(1), pages 145-178, March.
    16. Chen, Rubing & Geng, Zhichao & Lu, Lingfa & Yuan, Jinjiang & Zhang, Yuan, 2022. "Pareto-scheduling of two competing agents with their own equal processing times," European Journal of Operational Research, Elsevier, vol. 301(2), pages 414-431.
    17. Abdennour Azerine & Mourad Boudhar & Djamal Rebaine, 2022. "A two-machine no-wait flow shop problem with two competing agents," Journal of Combinatorial Optimization, Springer, vol. 43(1), pages 168-199, January.
    18. Lang, Fabian & Fink, Andreas & Brandt, Tobias, 2016. "Design of automated negotiation mechanisms for decentralized heterogeneous machine scheduling," European Journal of Operational Research, Elsevier, vol. 248(1), pages 192-203.
    19. Shang-Chia Liu & Jiahui Duan & Win-Chin Lin & Wen-Hsiang Wu & Jan-Yee Kung & Hau Chen & Chin-Chia Wu, 2018. "A Branch-and-Bound Algorithm for Two-Agent Scheduling with Learning Effect and Late Work Criterion," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(05), pages 1-24, October.
    20. Joseph Y.-T. Leung & Michael Pinedo & Guohua Wan, 2010. "Competitive Two-Agent Scheduling and Its Applications," Operations Research, INFORMS, vol. 58(2), pages 458-469, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:apjorx:v:33:y:2016:i:05:n:s0217595916500378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/apjor/apjor.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.