IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v63y2016icp41-47.html
   My bibliography  Save this article

Just-in-time scheduling with two competing agents on unrelated parallel machines

Author

Listed:
  • Yin, Yunqiang
  • Cheng, Shuenn-Ren
  • Cheng, T.C.E.
  • Wang, Du-Juan
  • Wu, Chin-Chia

Abstract

This paper considers two-agent just-in-time scheduling where agents A and B have to share m unrelated parallel machines for processing their jobs. The objective of agent A is to maximize the weighted number of its just-in-time jobs that are completed exactly on their due dates, while the objective of agent B is either to maximize its maximum gain (income) from its just-in-time jobs or to maximize the weighted number of its just-in-time jobs. We provide a bicriterion analysis of the problem, which seek to find the Pareto-optimal solutions for each combination of the two agents׳ criteria. When the number of machines is part of the problem instance, both the addressed problems are NP-hard in the strong sense. When the number of machines is fixed, we show that the problem of maximizing agent A׳s weighted number of just-in-time jobs while maximizing agent B׳s maximum gain can be solved in polynomial time, whereas the problem of maximizing both agents׳ weighted numbers of just-in-time jobs is NP-hard. For the latter problem, we also provide a pseudo-polynomial-time solution algorithm, establishing that it is NP-hard in the ordinary sense, and show that it admits a fully polynomial-time approximation scheme (FPTAS) for finding an approximate Pareto solution.

Suggested Citation

  • Yin, Yunqiang & Cheng, Shuenn-Ren & Cheng, T.C.E. & Wang, Du-Juan & Wu, Chin-Chia, 2016. "Just-in-time scheduling with two competing agents on unrelated parallel machines," Omega, Elsevier, vol. 63(C), pages 41-47.
  • Handle: RePEc:eee:jomega:v:63:y:2016:i:c:p:41-47
    DOI: 10.1016/j.omega.2015.09.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048315002042
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2015.09.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yin, Yunqiang & Cheng, T.C.E. & Hsu, Chou-Jung & Wu, Chin-Chia, 2013. "Single-machine batch delivery scheduling with an assignable common due window," Omega, Elsevier, vol. 41(2), pages 216-225.
    2. Allesandro Agnetis & Pitu B. Mirchandani & Dario Pacciarelli & Andrea Pacifici, 2004. "Scheduling Problems with Two Competing Agents," Operations Research, INFORMS, vol. 52(2), pages 229-242, April.
    3. Perez-Gonzalez, Paz & Framinan, Jose M., 2014. "A common framework and taxonomy for multicriteria scheduling problems with interfering and competing jobs: Multi-agent scheduling problems," European Journal of Operational Research, Elsevier, vol. 235(1), pages 1-16.
    4. Yaron Leyvand & Dvir Shabtay & George Steiner & Liron Yedidsion, 2010. "Just-in-time scheduling with controllable processing times on parallel machines," Journal of Combinatorial Optimization, Springer, vol. 19(3), pages 347-368, April.
    5. Sterna, Malgorzata, 2011. "A survey of scheduling problems with late work criteria," Omega, Elsevier, vol. 39(2), pages 120-129, April.
    6. Shabtay, Dvir, 2012. "The just-in-time scheduling problem in a flow-shop scheduling system," European Journal of Operational Research, Elsevier, vol. 216(3), pages 521-532.
    7. Defraeye, Mieke & Van Nieuwenhuyse, Inneke, 2016. "Staffing and scheduling under nonstationary demand for service: A literature review," Omega, Elsevier, vol. 58(C), pages 4-25.
    8. Shabtay, Dvir & Bensoussan, Yaron & Kaspi, Moshe, 2012. "A bicriteria approach to maximize the weighted number of just-in-time jobs and to minimize the total resource consumption cost in a two-machine flow-shop scheduling system," International Journal of Production Economics, Elsevier, vol. 136(1), pages 67-74.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yunqiang Yin & Du‐Juan Wang & Chin‐Chia Wu & T.C.E. Cheng, 2016. "CON/SLK due date assignment and scheduling on a single machine with two agents," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(5), pages 416-429, August.
    2. Kellerer, Hans & Rustogi, Kabir & Strusevich, Vitaly A., 2020. "A fast FPTAS for single machine scheduling problem of minimizing total weighted earliness and tardiness about a large common due date," Omega, Elsevier, vol. 90(C).
    3. Byung-Cheon Choi & Myoung-Ju Park, 2016. "An Ordered Flow Shop with Two Agents," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(05), pages 1-24, October.
    4. Oron, Daniel, 2021. "Two-agent scheduling problems under rejection budget constraints," Omega, Elsevier, vol. 102(C).
    5. Shesh Narayan Sahu & Yuvraj Gajpal & Swapan Debbarma, 2018. "Two-agent-based single-machine scheduling with switchover time to minimize total weighted completion time and makespan objectives," Annals of Operations Research, Springer, vol. 269(1), pages 623-640, October.
    6. Byung-Cheon Choi & Myoung-Ju Park, 2020. "Scheduling two projects with controllable processing times in a single-machine environment," Journal of Scheduling, Springer, vol. 23(5), pages 619-628, October.
    7. Byung-Gyoo Kim & Byung-Cheon Choi & Myoung-Ju Park, 2017. "Two-Machine and Two-Agent Flow Shop with Special Processing Times Structures," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(04), pages 1-17, August.
    8. Yunqiang Yin & Doudou Li & Dujuan Wang & T. C. E. Cheng, 2021. "Single-machine serial-batch delivery scheduling with two competing agents and due date assignment," Annals of Operations Research, Springer, vol. 298(1), pages 497-523, March.
    9. Matan Atsmony & Gur Mosheiov, 2023. "Scheduling to maximize the weighted number of on-time jobs on parallel machines with bounded job-rejection," Journal of Scheduling, Springer, vol. 26(2), pages 193-207, April.
    10. Yuan Zhang & Zhichao Geng & Jinjiang Yuan, 2020. "Two-Agent Pareto-Scheduling of Minimizing Total Weighted Completion Time and Total Weighted Late Work," Mathematics, MDPI, vol. 8(11), pages 1-17, November.
    11. Wu, Xueqi & Che, Ada, 2019. "A memetic differential evolution algorithm for energy-efficient parallel machine scheduling," Omega, Elsevier, vol. 82(C), pages 155-165.
    12. Yunqiang Yin & T. C. E. Cheng & Du-Juan Wang & Chin-Chia Wu, 2017. "Two-agent flowshop scheduling to maximize the weighted number of just-in-time jobs," Journal of Scheduling, Springer, vol. 20(4), pages 313-335, August.
    13. Wu, Xueqi & Che, Ada, 2020. "Energy-efficient no-wait permutation flow shop scheduling by adaptive multi-objective variable neighborhood search," Omega, Elsevier, vol. 94(C).
    14. Enrique Gerstl & Gur Mosheiov, 2023. "A note: maximizing the weighted number of Just-in-Time jobs for a given job sequence," Journal of Scheduling, Springer, vol. 26(4), pages 403-409, August.
    15. Jhang, Shih-Sian (Sherwin) & Ogden, Joseph P. & Suresh, Nallan C., 2019. "Operational and financial configurations contingent on market power status," Omega, Elsevier, vol. 88(C), pages 91-109.
    16. Wang, Haibo & Alidaee, Bahram, 2019. "Effective heuristic for large-scale unrelated parallel machines scheduling problems," Omega, Elsevier, vol. 83(C), pages 261-274.
    17. Hermelin, Danny & Kubitza, Judith-Madeleine & Shabtay, Dvir & Talmon, Nimrod & Woeginger, Gerhard J., 2019. "Scheduling two agents on a single machine: A parameterized analysis of NP-hard problems," Omega, Elsevier, vol. 83(C), pages 275-286.
    18. Baruch Mor & Gur Mosheiov, 2022. "Single machine scheduling to maximize the weighted number of on-time jobs with job-rejection," Operational Research, Springer, vol. 22(3), pages 2707-2719, July.
    19. Yunqiang Yin & Youhua Chen & Kaida Qin & Dujuan Wang, 2019. "Two-agent scheduling on unrelated parallel machines with total completion time and weighted number of tardy jobs criteria," Journal of Scheduling, Springer, vol. 22(3), pages 315-333, June.
    20. Yunqiang Yin & Yongjian Yang & Dujuan Wang & T.C.E. Cheng & Chin‐Chia Wu, 2018. "Integrated production, inventory, and batch delivery scheduling with due date assignment and two competing agents," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(5), pages 393-409, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yunqiang Yin & T. C. E. Cheng & Du-Juan Wang & Chin-Chia Wu, 2017. "Two-agent flowshop scheduling to maximize the weighted number of just-in-time jobs," Journal of Scheduling, Springer, vol. 20(4), pages 313-335, August.
    2. Du-Juan Wang & Yunqiang Yin & Shuenn-Ren Cheng & T.C.E. Cheng & Chin-Chia Wu, 2016. "Due date assignment and scheduling on a single machine with two competing agents," International Journal of Production Research, Taylor & Francis Journals, vol. 54(4), pages 1152-1169, February.
    3. Yunqiang Yin & Doudou Li & Dujuan Wang & T. C. E. Cheng, 2021. "Single-machine serial-batch delivery scheduling with two competing agents and due date assignment," Annals of Operations Research, Springer, vol. 298(1), pages 497-523, March.
    4. Ruyan He & Jinjiang Yuan, 2020. "Two-Agent Preemptive Pareto-Scheduling to Minimize Late Work and Other Criteria," Mathematics, MDPI, vol. 8(9), pages 1-18, September.
    5. Shi-Sheng Li & Jin-Jiang Yuan, 2020. "Single-machine scheduling with multi-agents to minimize total weighted late work," Journal of Scheduling, Springer, vol. 23(4), pages 497-512, August.
    6. Yunqiang Yin & Yongjian Yang & Dujuan Wang & T.C.E. Cheng & Chin‐Chia Wu, 2018. "Integrated production, inventory, and batch delivery scheduling with due date assignment and two competing agents," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(5), pages 393-409, August.
    7. Zhang, Xingong, 2021. "Two competitive agents to minimize the weighted total late work and the total completion time," Applied Mathematics and Computation, Elsevier, vol. 406(C).
    8. Zhang Xingong & Wang Yong, 2017. "Two-agent scheduling problems on a single-machine to minimize the total weighted late work," Journal of Combinatorial Optimization, Springer, vol. 33(3), pages 945-955, April.
    9. Shi-Sheng Li & Ren-Xia Chen & Qi Feng, 2016. "Scheduling two job families on a single machine with two competitive agents," Journal of Combinatorial Optimization, Springer, vol. 32(3), pages 784-799, October.
    10. Shisheng Li & T.C.E. Cheng & C.T. Ng & Jinjiang Yuan, 2017. "Two‐agent scheduling on a single sequential and compatible batching machine," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(8), pages 628-641, December.
    11. Yuan Zhang & Jinjiang Yuan, 2019. "A note on a two-agent scheduling problem related to the total weighted late work," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 989-999, April.
    12. Chin-Chia Wu & Jatinder N. D. Gupta & Win-Chin Lin & Shuenn-Ren Cheng & Yen-Lin Chiu & Juin-Han Chen & Long-Yuan Lee, 2022. "Robust Scheduling of Two-Agent Customer Orders with Scenario-Dependent Component Processing Times and Release Dates," Mathematics, MDPI, vol. 10(9), pages 1-17, May.
    13. Vahid Nasrollahi & Ghasem Moslehi & Mohammad Reisi-Nafchi, 2022. "Minimizing the weighted sum of maximum earliness and maximum tardiness in a single-agent and two-agent form of a two-machine flow shop scheduling problem," Operational Research, Springer, vol. 22(2), pages 1403-1442, April.
    14. Geng, Zhichao & Yuan, Jinjiang, 2023. "Single-machine scheduling of multiple projects with controllable processing times," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1074-1090.
    15. Wan, Long & Mei, Jiajie & Du, Jiangze, 2021. "Two-agent scheduling of unit processing time jobs to minimize total weighted completion time and total weighted number of tardy jobs," European Journal of Operational Research, Elsevier, vol. 290(1), pages 26-35.
    16. Ren-Xia Chen & Shi-Sheng Li, 2019. "Two-agent single-machine scheduling with cumulative deterioration," 4OR, Springer, vol. 17(2), pages 201-219, June.
    17. Yang, Dar-Li & Lai, Chien-Jung & Yang, Suh-Jenq, 2014. "Scheduling problems with multiple due windows assignment and controllable processing times on a single machine," International Journal of Production Economics, Elsevier, vol. 150(C), pages 96-103.
    18. Omri Dover & Dvir Shabtay, 2016. "Single machine scheduling with two competing agents, arbitrary release dates and unit processing times," Annals of Operations Research, Springer, vol. 238(1), pages 145-178, March.
    19. Ruyan He & Jinjiang Yuan & C. T. Ng & T. C. E. Cheng, 2021. "Two-agent preemptive Pareto-scheduling to minimize the number of tardy jobs and total late work," Journal of Combinatorial Optimization, Springer, vol. 41(2), pages 504-525, February.
    20. Akiyoshi Shioura & Natalia V. Shakhlevich & Vitaly A. Strusevich & Bernhard Primas, 2018. "Models and algorithms for energy-efficient scheduling with immediate start of jobs," Journal of Scheduling, Springer, vol. 21(5), pages 505-516, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:63:y:2016:i:c:p:41-47. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.