IDEAS home Printed from https://ideas.repec.org/a/wly/sustdv/v29y2021i5p823-834.html
   My bibliography  Save this article

What abates carbon emissions in China: Examining the impact of renewable energy and green investment

Author

Listed:
  • Yongming Huang
  • Lian Xue
  • Zeeshan Khan

Abstract

With a rising trend in global CO2 emissions due to industrialization, the role of renewable energy, technological innovation and green investment in curbing is critical. The main contribution of the current paper is to examine the impact of green investment, renewable energy consumption and technological innovation on CO2 emissions of 30 sample provinces of China from 1995–2019. The results of CS‐ARDL approach shows that renewable energy, technological innovation and green investment is important in abating CO2 emissions in China. Also, EKC for provincial data of China is confirmed. However, financial development escalates carbon emissions in China. It is also found that any policy change in green investment, financial development, renewable energy, technological innovation, and natural resource rent has strong implications for environmental quality of China. Therefore, shifting the economic structure to renewable energy is an important strategy to reduce carbon emissions. It is suggested that an adequate level of green investment projects should be initiated. Appropriate regulatory and economic drivers can boost investment businesses with more resources provided for the promotion of technical assistance.

Suggested Citation

  • Yongming Huang & Lian Xue & Zeeshan Khan, 2021. "What abates carbon emissions in China: Examining the impact of renewable energy and green investment," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(5), pages 823-834, September.
  • Handle: RePEc:wly:sustdv:v:29:y:2021:i:5:p:823-834
    DOI: 10.1002/sd.2177
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/sd.2177
    Download Restriction: no

    File URL: https://libkey.io/10.1002/sd.2177?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Acheampong, Alex O., 2019. "Modelling for insight: Does financial development improve environmental quality?," Energy Economics, Elsevier, vol. 83(C), pages 156-179.
    2. Hashem Pesaran, M. & Yamagata, Takashi, 2008. "Testing slope homogeneity in large panels," Journal of Econometrics, Elsevier, vol. 142(1), pages 50-93, January.
    3. Bhattacharya, Mita & Inekwe, John N. & Sadorsky, Perry, 2020. "Consumption-based and territory-based carbon emissions intensity: Determinants and forecasting using club convergence across countries," Energy Economics, Elsevier, vol. 86(C).
    4. Stern , David I., 1998. "Progress on the environmental Kuznets curve?," Environment and Development Economics, Cambridge University Press, vol. 3(2), pages 173-196, May.
    5. Khan, Zeeshan & Ali, Shahid & Dong, Kangyin & Li, Rita Yi Man, 2021. "How does fiscal decentralization affect CO2 emissions? The roles of institutions and human capital," Energy Economics, Elsevier, vol. 94(C).
    6. Joakim Westerlund, 2007. "Testing for Error Correction in Panel Data," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 69(6), pages 709-748, December.
    7. Jeffrey D. Sachs & Guido Schmidt-Traub & Mariana Mazzucato & Dirk Messner & Nebojsa Nakicenovic & Johan Rockström, 2019. "Six Transformations to achieve the Sustainable Development Goals," Nature Sustainability, Nature, vol. 2(9), pages 805-814, September.
    8. M. Hashem Pesaran, 2021. "General diagnostic tests for cross-sectional dependence in panels," Empirical Economics, Springer, vol. 60(1), pages 13-50, January.
    9. Charfeddine, Lanouar & Kahia, Montassar, 2019. "Impact of renewable energy consumption and financial development on CO2 emissions and economic growth in the MENA region: A panel vector autoregressive (PVAR) analysis," Renewable Energy, Elsevier, vol. 139(C), pages 198-213.
    10. Inglesi-Lotz, Roula & Dogan, Eyup, 2018. "The role of renewable versus non-renewable energy to the level of CO2 emissions a panel analysis of sub- Saharan Africa’s Βig 10 electricity generators," Renewable Energy, Elsevier, vol. 123(C), pages 36-43.
    11. Grossman, Gene M. & Krueger, Alan B., 1996. "The inverted-U: what does it mean?," Environment and Development Economics, Cambridge University Press, vol. 1(1), pages 119-122, February.
    12. Abbasi, Faiza & Riaz, Khalid, 2016. "CO2 emissions and financial development in an emerging economy: An augmented VAR approach," Energy Policy, Elsevier, vol. 90(C), pages 102-114.
    13. Im, Kyung So & Pesaran, M. Hashem & Shin, Yongcheol, 2003. "Testing for unit roots in heterogeneous panels," Journal of Econometrics, Elsevier, vol. 115(1), pages 53-74, July.
    14. Shahid ALI & Maryam BIBI & Fazli RABBI, 2014. "A New Economic Dimension to the Environmental Kuznets Curve: Estimation of Environmental Efficiency in Case of Pakistan," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 4(1), pages 68-79, January.
    15. Shahid ALI & Maryam BIBI & Fazli RABBI, 2014. "A New Economic Dimension to the Environmental Kuznets Curve: Estimation of Environmental Efficiency in Case of Pakistan," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 4(1), pages 68-79.
    16. Levin, Andrew & Lin, Chien-Fu & James Chu, Chia-Shang, 2002. "Unit root tests in panel data: asymptotic and finite-sample properties," Journal of Econometrics, Elsevier, vol. 108(1), pages 1-24, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Boqiang & Okoye, Jude O., 2023. "Towards renewable energy generation and low greenhouse gas emission in high-income countries: Performance of financial development and governance," Renewable Energy, Elsevier, vol. 215(C).
    2. Sharma, Rajesh & Sinha, Avik & Kautish, Pradeep, 2020. "Does renewable energy consumption reduce ecological footprint? Evidence from eight developing countries of Asia," MPRA Paper 104277, University Library of Munich, Germany, revised 2020.
    3. Francisco García-Lillo & Eduardo Sánchez-García & Bartolomé Marco-Lajara & Pedro Seva-Larrosa, 2023. "Renewable Energies and Sustainable Development: A Bibliometric Overview," Energies, MDPI, vol. 16(3), pages 1-22, January.
    4. Khan, Muhammad Tariq Iqbal & Yaseen, Muhammad Rizwan & Ali, Qamar, 2019. "Nexus between financial development, tourism, renewable energy, and greenhouse gas emission in high-income countries: A continent-wise analysis," Energy Economics, Elsevier, vol. 83(C), pages 293-310.
    5. Zhang, Qianxiao & Shah, Syed Ale Raza & Yang, Ling, 2022. "Modeling the effect of disaggregated renewable energies on ecological footprint in E5 economies: Do economic growth and R&D matter?," Applied Energy, Elsevier, vol. 310(C).
    6. Usman, Muhammad & Makhdum, Muhammad Sohail Amjad, 2021. "What abates ecological footprint in BRICS-T region? Exploring the influence of renewable energy, non-renewable energy, agriculture, forest area and financial development," Renewable Energy, Elsevier, vol. 179(C), pages 12-28.
    7. Gao, Chunjiao & Chen, Hongxi, 2023. "Electricity from renewable energy resources: Sustainable energy transition and emissions for developed economies," Utilities Policy, Elsevier, vol. 82(C).
    8. Ehigiamusoe, Kizito Uyi & Dogan, Eyup, 2022. "The role of interaction effect between renewable energy consumption and real income in carbon emissions: Evidence from low-income countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    9. Angeliki N. Menegaki, 2019. "The ARDL Method in the Energy-Growth Nexus Field; Best Implementation Strategies," Economies, MDPI, vol. 7(4), pages 1-16, October.
    10. Sandu, Suwin & Yang, Muyi & Phoumin, Han & Aghdam, Reza Fathollahzadeh & Shi, Xunpeng, 2021. "Assessment of accessible, clean and efficient energy systems: A statistical analysis of composite energy performance indices," Applied Energy, Elsevier, vol. 304(C).
    11. Huang, Lingyun & Zou, Yanjun, 2020. "How to promote energy transition in China: From the perspectives of interregional relocation and environmental regulation," Energy Economics, Elsevier, vol. 92(C).
    12. Sung, Bongsuk & Song, Woo-Yong & Park, Sang-Do, 2018. "How foreign direct investment affects CO2 emission levels in the Chinese manufacturing industry: Evidence from panel data," Economic Systems, Elsevier, vol. 42(2), pages 320-331.
    13. Shahnazi, Rouhollah & Dehghan Shabani, Zahra, 2021. "The effects of renewable energy, spatial spillover of CO2 emissions and economic freedom on CO2 emissions in the EU," Renewable Energy, Elsevier, vol. 169(C), pages 293-307.
    14. Huaping Sun & Love Enna & Augustine Monney & Dang Khoa Tran & Ehsan Rasoulinezhad & Farhad Taghizadeh-Hesary, 2020. "The Long-Run Effects of Trade Openness on Carbon Emissions in Sub-Saharan African Countries," Energies, MDPI, vol. 13(20), pages 1-18, October.
    15. Azad Haider & Wimal Rankaduwa & Farzana Shaheen & Sunila Jabeen, 2023. "The Nexus between GHGs Emissions and Clean Growth: Empirical Evidence from Canadian Provinces," Sustainability, MDPI, vol. 15(3), pages 1-19, January.
    16. Chi, Meiqing & Muhammad, Sulaman & Khan, Zeeshan & Ali, Shahid & Li, Rita Yi Man, 2021. "Is centralization killing innovation? The success story of technological innovation in fiscally decentralized countries," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    17. Tiwari, Sunil & Si Mohammed, Kamel & Guesmi, Khaled, 2023. "A way forward to end energy poverty in China: Role of carbon-cutting targets and net-zero commitments," Energy Policy, Elsevier, vol. 180(C).
    18. Ali, Kishwar & Jianguo, Du & Kirikkaleli, Dervis, 2022. "Modeling the natural resources and financial inclusion on ecological footprint: The role of economic governance institutions. Evidence from ECOWAS economies," Resources Policy, Elsevier, vol. 79(C).
    19. Katircioglu, Salih Turan & Sertoglu, Kamil & Candemir, Mehmet & Mercan, Mehmet, 2015. "Oil price movements and macroeconomic performance: Evidence from twenty-six OECD countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 257-270.
    20. Tarik Dogru & Umit Bulut & Ercan Sirakaya-Turk, 2021. "Modeling tourism demand: Theoretical and empirical considerations for future research," Tourism Economics, , vol. 27(4), pages 874-889, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:sustdv:v:29:y:2021:i:5:p:823-834. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1099-1719 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.