IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v38y2018i1p118-133.html
   My bibliography  Save this article

Modeling Precheck Parallel Screening Process in the Face of Strategic Applicants with Incomplete Information and Screening Errors

Author

Listed:
  • Cen Song
  • Jun Zhuang

Abstract

In security check systems, tighter screening processes increase the security level, but also cause more congestion, which could cause longer wait times. Having to deal with more congestion in lines could also cause issues for the screeners. The Transportation Security Administration (TSA) Precheck Program was introduced to create fast lanes in airports with the goal of expediting passengers who the TSA does not deem to be threats. In this lane, the TSA allows passengers to enjoy fewer restrictions in order to speed up the screening time. Motivated by the TSA Precheck Program, we study parallel queueing imperfect screening systems, where the potential normal and adversary participants/applicants decide whether to apply to the Precheck Program or not. The approved participants would be assigned to a faster screening channel based on a screening policy determined by an approver, who balances the concerns of safety of the passengers and congestion of the lines. There exist three types of optimal normal applicant's application strategy, which depend on whether the marginal payoff is negative or positive, or whether the marginal benefit equals the marginal cost. An adversary applicant would not apply when the screening policy is sufficiently large or the number of utilized benefits is sufficiently small. The basic model is extended by considering (1) applicants' parameters to follow different distributions and (2) applicants to have risk levels, where the approver determines the threshold value needed to qualify for Precheck. This article integrates game theory and queueing theory to study the optimal screening policy and provides some insights to imperfect parallel queueing screening systems.

Suggested Citation

  • Cen Song & Jun Zhuang, 2018. "Modeling Precheck Parallel Screening Process in the Face of Strategic Applicants with Incomplete Information and Screening Errors," Risk Analysis, John Wiley & Sons, vol. 38(1), pages 118-133, January.
  • Handle: RePEc:wly:riskan:v:38:y:2018:i:1:p:118-133
    DOI: 10.1111/risa.12822
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.12822
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.12822?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiaojun Shan & Jun Zhuang, 2013. "Cost of Equity in Homeland Security Resource Allocation in the Face of a Strategic Attacker," Risk Analysis, John Wiley & Sons, vol. 33(6), pages 1083-1099, June.
    2. Kjell Hausken, 2011. "Protecting complex infrastructures against multiple strategic attackers," International Journal of Systems Science, Taylor & Francis Journals, vol. 42(1), pages 11-29.
    3. Mohammad E. Nikoofal & Jun Zhuang, 2012. "Robust Allocation of a Defensive Budget Considering an Attacker's Private Information," Risk Analysis, John Wiley & Sons, vol. 32(5), pages 930-943, May.
    4. Rosenthal, R W, 1979. "Sequences of Games with Varying Opponents," Econometrica, Econometric Society, vol. 47(6), pages 1353-1366, November.
    5. Vicki Bier & Hoa Han & Lorna Zack, 2008. "Models of Interdependent Security along the Milk Supply Chain," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 90(5), pages 1265-1271.
    6. Xiaojun (Gene) Shan & Jun Zhuang, 2014. "Modeling Credible Retaliation Threats in Deterring the Smuggling of Nuclear Weapons Using Partial Inspection---A Three-Stage Game," Decision Analysis, INFORMS, vol. 11(1), pages 43-62, March.
    7. Bier, Vicki M. & Hausken, Kjell, 2013. "Defending and attacking a network of two arcs subject to traffic congestion," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 214-224.
    8. May Cheung & Jun Zhuang, 2012. "Regulation Games Between Government and Competing Companies: Oil Spills and Other Disasters," Decision Analysis, INFORMS, vol. 9(2), pages 156-164, June.
    9. Wang, Xiaofang & Zhuang, Jun, 2011. "Balancing congestion and security in the presence of strategic applicants with private information," European Journal of Operational Research, Elsevier, vol. 212(1), pages 100-111, July.
    10. A. Regattieri & R. Gamberini & F. Lolli & R. Manzini, 2010. "Designing production and service systems using queuing theory: principles and application to an airport passenger security screening system," International Journal of Services and Operations Management, Inderscience Enterprises Ltd, vol. 6(2), pages 206-225.
    11. Shan, Xiaojun & Zhuang, Jun, 2013. "Hybrid defensive resource allocations in the face of partially strategic attackers in a sequential defender–attacker game," European Journal of Operational Research, Elsevier, vol. 228(1), pages 262-272.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiang, Yin, 2023. "Minimizing the maximal reliable path with a nodal interdiction model considering resource sharing," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    2. Liu, Zhongyi & Liu, Jingchen & Zhai, Xin & Wang, Guanying, 2019. "Police staffing and workload assignment in law enforcement using multi-server queueing models," European Journal of Operational Research, Elsevier, vol. 276(2), pages 614-625.
    3. Yael Deutsch & Boaz Golany, 2019. "Securing Gates of a Protected Area: A Hybrid Game and Queueing Theory Modeling Approach," Decision Analysis, INFORMS, vol. 16(1), pages 31-45, March.
    4. Hunt, Kyle & Agarwal, Puneet & Zhuang, Jun, 2022. "On the adoption of new technology to enhance counterterrorism measures: An attacker–defender game with risk preferences," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    5. Hunt, Kyle & Agarwal, Puneet & Zhuang, Jun, 2021. "Technology adoption for airport security: Modeling public disclosure and secrecy in an attacker-defender game," Reliability Engineering and System Safety, Elsevier, vol. 207(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shan, Xiaojun & Zhuang, Jun, 2018. "Modeling cumulative defensive resource allocation against a strategic attacker in a multi-period multi-target sequential game," Reliability Engineering and System Safety, Elsevier, vol. 179(C), pages 12-26.
    2. César Gil & David Rios Insua & Jesus Rios, 2016. "Adversarial Risk Analysis for Urban Security Resource Allocation," Risk Analysis, John Wiley & Sons, vol. 36(4), pages 727-741, April.
    3. Mohammad E. Nikoofal & Mehmet Gümüs, 2015. "On the value of terrorist’s private information in a government’s defensive resource allocation problem," IISE Transactions, Taylor & Francis Journals, vol. 47(6), pages 533-555, June.
    4. Puneet Agarwal & Kyle Hunt & Shivasubramanian Srinivasan & Jun Zhuang, 2020. "Fire Code Inspection and Compliance: A Game-Theoretic Model Between Fire Inspection Agencies and Building Owners," Decision Analysis, INFORMS, vol. 17(3), pages 208-226, September.
    5. Wu, Baichao & Tang, Aiping & Wu, Jie, 2016. "Modeling cascading failures in interdependent infrastructures under terrorist attacks," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 1-8.
    6. Peiqiu Guan & Jun Zhuang, 2016. "Modeling Resources Allocation in Attacker‐Defender Games with “Warm Up” CSF," Risk Analysis, John Wiley & Sons, vol. 36(4), pages 776-791, April.
    7. Jie Xu & Jun Zhuang & Zigeng Liu, 2016. "Modeling and mitigating the effects of supply chain disruption in a defender–attacker game," Annals of Operations Research, Springer, vol. 236(1), pages 255-270, January.
    8. Qingqing Zhai & Rui Peng & Jun Zhuang, 2020. "Defender–Attacker Games with Asymmetric Player Utilities," Risk Analysis, John Wiley & Sons, vol. 40(2), pages 408-420, February.
    9. Hunt, Kyle & Agarwal, Puneet & Zhuang, Jun, 2022. "On the adoption of new technology to enhance counterterrorism measures: An attacker–defender game with risk preferences," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    10. Simon, Jay & Omar, Ayman, 2020. "Cybersecurity investments in the supply chain: Coordination and a strategic attacker," European Journal of Operational Research, Elsevier, vol. 282(1), pages 161-171.
    11. Cameron MacKenzie & Hiba Baroud & Kash Barker, 2016. "Static and dynamic resource allocation models for recovery of interdependent systems: application to the Deepwater Horizon oil spill," Annals of Operations Research, Springer, vol. 236(1), pages 103-129, January.
    12. Nageswara S. V. Rao & Chris Y. T. Ma & Fei He & David K. Y. Yau & Jun Zhuang, 2018. "Cyber–Physical Correlation Effects in Defense Games for Large Discrete Infrastructures," Games, MDPI, vol. 9(3), pages 1-24, July.
    13. Nageswara S. V. Rao & Stephen W. Poole & Chris Y. T. Ma & Fei He & Jun Zhuang & David K. Y. Yau, 2016. "Defense of Cyber Infrastructures Against Cyber‐Physical Attacks Using Game‐Theoretic Models," Risk Analysis, John Wiley & Sons, vol. 36(4), pages 694-710, April.
    14. Zhang, Jing & Zhuang, Jun, 2019. "Modeling a multi-target attacker-defender game with multiple attack types," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 465-475.
    15. Chen, Shun & Zhao, Xudong & Chen, Zhilong & Hou, Benwei & Wu, Yipeng, 2022. "A game-theoretic method to optimize allocation of defensive resource to protect urban water treatment plants against physical attacks," International Journal of Critical Infrastructure Protection, Elsevier, vol. 36(C).
    16. Pourakbar, M. & Zuidwijk, R.A., 2018. "The role of customs in securing containerized global supply chains," European Journal of Operational Research, Elsevier, vol. 271(1), pages 331-340.
    17. Xiaojun (Gene) Shan & Jun Zhuang, 2014. "Modeling Credible Retaliation Threats in Deterring the Smuggling of Nuclear Weapons Using Partial Inspection---A Three-Stage Game," Decision Analysis, INFORMS, vol. 11(1), pages 43-62, March.
    18. Bose, Gautam & Konrad, Kai A., 2020. "Devil take the hindmost: Deflecting attacks to other defenders," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    19. Liang, Liang & Chen, Jingxian & Siqueira, Kevin, 2020. "Revenge or continued attack and defense in defender–attacker conflicts," European Journal of Operational Research, Elsevier, vol. 287(3), pages 1180-1190.
    20. Rui Peng & Di Wu & Mengyao Sun & Shaomin Wu, 2021. "An attack-defense game on interdependent networks," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 72(10), pages 2331-2341, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:38:y:2018:i:1:p:118-133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.