IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v218y2022ipbs0951832021006372.html
   My bibliography  Save this article

On the adoption of new technology to enhance counterterrorism measures: An attacker–defender game with risk preferences

Author

Listed:
  • Hunt, Kyle
  • Agarwal, Puneet
  • Zhuang, Jun

Abstract

To address the adaptive and dynamic threats that terrorists bring to our global society, it is imperative that counterterrorism agencies continue to improve their capabilities. To this end, one important challenge that has received scarce attention in the research community is the adoption of new counterterrorism technologies. Given that the adoption of new technology is common in practice (e.g., baggage scanners at airports, UAVs for border surveillance, maritime monitoring systems, port screening systems), it is essential to study the strategic advantages of doing so. To help fill the gap in the literature, in this article, we develop an attacker–defender model in which a defender seeks to adopt new technology, and an adversary seeks to attack a target. We model a discrete choice defender and a continuous choice attacker, where the contest success function is endogenously determined. Aside from proposing a novel game-theoretic model, we also extensively study the risk attitudes of the players. Among other interesting insights, we find that the risk averse defender plays a more cautious game, and when she is very risk averse or very risk seeking, she does not adopt technology. For the adversary, when he is risk seeking he generally devotes more effort to an attack. This paper helps to fill a significant gap in the literature concerning the adoption of new counterterrorism technology when facing a strategic adversary, and the role of the players’ risk preferences in this game environment.

Suggested Citation

  • Hunt, Kyle & Agarwal, Puneet & Zhuang, Jun, 2022. "On the adoption of new technology to enhance counterterrorism measures: An attacker–defender game with risk preferences," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
  • Handle: RePEc:eee:reensy:v:218:y:2022:i:pb:s0951832021006372
    DOI: 10.1016/j.ress.2021.108151
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021006372
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.108151?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kjell Hausken, 2020. "Additive multi-effort contests," Theory and Decision, Springer, vol. 89(2), pages 203-248, September.
    2. Mohammad E. Nikoofal & Jun Zhuang, 2012. "Robust Allocation of a Defensive Budget Considering an Attacker's Private Information," Risk Analysis, John Wiley & Sons, vol. 32(5), pages 930-943, May.
    3. Hausken, Kjell, 2008. "Strategic defense and attack for series and parallel reliability systems," European Journal of Operational Research, Elsevier, vol. 186(2), pages 856-881, April.
    4. Kjell Hausken, 2011. "Production, safety, fighting, and risk," International Journal of Business Continuity and Risk Management, Inderscience Enterprises Ltd, vol. 2(4), pages 324-329.
    5. Johannes Ulrich Siebert & Detlof von Winterfeldt, 2020. "Comparative Analysis of Terrorists’ Objectives Hierarchies," Decision Analysis, INFORMS, vol. 17(2), pages 97-114, June.
    6. Scott Farrow, 2007. "The Economics Of Homeland Security Expenditures: Foundational Expected Cost‐Effectiveness Approaches," Contemporary Economic Policy, Western Economic Association International, vol. 25(1), pages 14-26, January.
    7. Stergios Skaperdas, 1996. "Contest success functions (*)," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 7(2), pages 283-290.
    8. Mohsen Golalikhani & Jun Zhuang, 2011. "Modeling Arbitrary Layers of Continuous‐Level Defenses in Facing with Strategic Attackers," Risk Analysis, John Wiley & Sons, vol. 31(4), pages 533-547, April.
    9. Jun Zhuang & Vicki M. Bier, 2007. "Balancing Terrorism and Natural Disasters---Defensive Strategy with Endogenous Attacker Effort," Operations Research, INFORMS, vol. 55(5), pages 976-991, October.
    10. Zhuang, Jun & Bier, Vicki M. & Alagoz, Oguzhan, 2010. "Modeling secrecy and deception in a multiple-period attacker-defender signaling game," European Journal of Operational Research, Elsevier, vol. 203(2), pages 409-418, June.
    11. Kjell Hausken, 2010. "Risk, production and conflict when utilities are as if certain," International Journal of Decision Sciences, Risk and Management, Inderscience Enterprises Ltd, vol. 2(3/4), pages 228-251.
    12. Estrada, Mario Arturo Ruiz & Park, Donghyun & Kim, Jung Suk & Khan, Alam, 2015. "The economic impact of terrorism: A new model and its application to Pakistan," Journal of Policy Modeling, Elsevier, vol. 37(6), pages 1065-1080.
    13. Peiqiu Guan & Jing Zhang & Vineet M. Payyappalli & Jun Zhuang, 2018. "Modeling and Validating Public–Private Partnerships in Disaster Management," Decision Analysis, INFORMS, vol. 15(2), pages 55-71, June.
    14. Vineet M. Payyappalli & Jun Zhuang & Victor Richmond R. Jose, 2017. "Deterrence and Risk Preferences in Sequential Attacker–Defender Games with Continuous Efforts," Risk Analysis, John Wiley & Sons, vol. 37(11), pages 2229-2245, November.
    15. Nikoofal, Mohammad E. & Zhuang, Jun, 2015. "On the value of exposure and secrecy of defense system: First-mover advantage vs. robustness," European Journal of Operational Research, Elsevier, vol. 246(1), pages 320-330.
    16. Zhang, Jing & Zhuang, Jun, 2019. "Modeling a multi-target attacker-defender game with multiple attack types," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 465-475.
    17. Zhang, Jing & Wang, Yan & Zhuang, Jun, 2021. "Modeling multi-target defender-attacker games with quantal response attack strategies," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    18. Ralph L. Keeney & Detlof von Winterfeldt, 2011. "A Value Model for Evaluating Homeland Security Decisions," Risk Analysis, John Wiley & Sons, vol. 31(9), pages 1470-1487, September.
    19. Tamasi, Galileo & Demichela, Micaela, 2011. "Risk assessment techniques for civil aviation security," Reliability Engineering and System Safety, Elsevier, vol. 96(8), pages 892-899.
    20. K Hausken & J Zhuang, 2012. "The timing and deterrence of terrorist attacks due to exogenous dynamics," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(6), pages 726-735, June.
    21. Qingqing Zhai & Rui Peng & Jun Zhuang, 2020. "Defender–Attacker Games with Asymmetric Player Utilities," Risk Analysis, John Wiley & Sons, vol. 40(2), pages 408-420, February.
    22. Kjell Hausken & Vicki M. Bier & Jun Zhuang, 2009. "Defending Against Terrorism, Natural Disaster, and All Hazards," International Series in Operations Research & Management Science, in: Vicki M. M. Bier & M. Naceur Azaiez (ed.), Game Theoretic Risk Analysis of Security Threats, chapter 4, pages 65-97, Springer.
    23. Hausken, Kjell & Bier, Vicki M., 2011. "Defending against multiple different attackers," European Journal of Operational Research, Elsevier, vol. 211(2), pages 370-384, June.
    24. Vicki M. Bier & Naraphorn Haphuriwat & Jaime Menoyo & Rae Zimmerman & Alison M. Culpen, 2008. "Optimal Resource Allocation for Defense of Targets Based on Differing Measures of Attractiveness," Risk Analysis, John Wiley & Sons, vol. 28(3), pages 763-770, June.
    25. Laura A. McLay & Adrian J. Lee & Sheldon H. Jacobson, 2010. "Risk-Based Policies for Airport Security Checkpoint Screening," Transportation Science, INFORMS, vol. 44(3), pages 333-349, August.
    26. Zhang, Jing & Zhuang, Jun & Jose, Victor Richmond R., 2018. "The role of risk preferences in a multi-target defender-attacker resource allocation game," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 95-104.
    27. Hausken, Kjell & Levitin, Gregory, 2009. "Protection vs. false targets in series systems," Reliability Engineering and System Safety, Elsevier, vol. 94(5), pages 973-981.
    28. Partha Dasgupta & Eric Maskin, 1986. "The Existence of Equilibrium in Discontinuous Economic Games, I: Theory," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 53(1), pages 1-26.
    29. Partha Dasgupta & Eric Maskin, 1986. "The Existence of Equilibrium in Discontinuous Economic Games, II: Applications," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 53(1), pages 27-41.
    30. Abdollah Shafieezadeh & Eun J. Cha & Bruce R. Ellingwood, 2015. "A Decision Framework for Managing Risk to Airports from Terrorist Attack," Risk Analysis, John Wiley & Sons, vol. 35(2), pages 292-306, February.
    31. Jaspersen, Johannes G. & Montibeller, Gilberto, 2020. "On the learning patterns and adaptive behavior of terrorist organizations," European Journal of Operational Research, Elsevier, vol. 282(1), pages 221-234.
    32. Lin, Chen & Xiao, Hui & Peng, Rui & Xiang, Yisha, 2021. "Optimal defense-attack strategies between M defenders and N attackers: A method based on cumulative prospect theory," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    33. Hunt, Kyle & Agarwal, Puneet & Zhuang, Jun, 2021. "Technology adoption for airport security: Modeling public disclosure and secrecy in an attacker-defender game," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    34. Wang, Xiaofang & Zhuang, Jun, 2011. "Balancing congestion and security in the presence of strategic applicants with private information," European Journal of Operational Research, Elsevier, vol. 212(1), pages 100-111, July.
    35. Lawrence M. Wein & Yifan Liu & Arik Motskin, 2009. "Analyzing the Homeland Security of the U.S.‐Mexico Border," Risk Analysis, John Wiley & Sons, vol. 29(5), pages 699-713, May.
    36. Andrew Fielder & Sandra König & Emmanouil Panaousis & Stefan Schauer & Stefan Rass, 2018. "Risk Assessment Uncertainties in Cybersecurity Investments," Games, MDPI, vol. 9(2), pages 1-14, June.
    37. Kjell Hausken & Jun Zhuang, 2011. "Governments' and Terrorists' Defense and Attack in a T -Period Game," Decision Analysis, INFORMS, vol. 8(1), pages 46-70, March.
    38. Cen Song & Jun Zhuang, 2018. "Modeling Precheck Parallel Screening Process in the Face of Strategic Applicants with Incomplete Information and Screening Errors," Risk Analysis, John Wiley & Sons, vol. 38(1), pages 118-133, January.
    39. Shan, Xiaojun & Zhuang, Jun, 2013. "Hybrid defensive resource allocations in the face of partially strategic attackers in a sequential defender–attacker game," European Journal of Operational Research, Elsevier, vol. 228(1), pages 262-272.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Esther Jose & Puneet Agarwal & Jun Zhuang, 2023. "A data-driven analysis and optimization of the impact of prescribed fire programs on wildfire risk in different regions of the USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 181-207, August.
    2. Wang, Jian & Cui, Lei, 2023. "Patrolling games with coordination between monitoring devices and patrols," Reliability Engineering and System Safety, Elsevier, vol. 233(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qingqing Zhai & Rui Peng & Jun Zhuang, 2020. "Defender–Attacker Games with Asymmetric Player Utilities," Risk Analysis, John Wiley & Sons, vol. 40(2), pages 408-420, February.
    2. Hunt, Kyle & Agarwal, Puneet & Zhuang, Jun, 2021. "Technology adoption for airport security: Modeling public disclosure and secrecy in an attacker-defender game," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    3. Zhiheng Xu & Jun Zhuang, 2019. "A Study on a Sequential One‐Defender‐N‐Attacker Game," Risk Analysis, John Wiley & Sons, vol. 39(6), pages 1414-1432, June.
    4. Sushil Gupta & Martin K. Starr & Reza Zanjirani Farahani & Mahsa Mahboob Ghodsi, 2020. "Prevention of Terrorism–An Assessment of Prior POM Work and Future Potentials," Production and Operations Management, Production and Operations Management Society, vol. 29(7), pages 1789-1815, July.
    5. Xiaojun (Gene) Shan & Jun Zhuang, 2014. "Modeling Credible Retaliation Threats in Deterring the Smuggling of Nuclear Weapons Using Partial Inspection---A Three-Stage Game," Decision Analysis, INFORMS, vol. 11(1), pages 43-62, March.
    6. Liang, Liang & Chen, Jingxian & Siqueira, Kevin, 2020. "Revenge or continued attack and defense in defender–attacker conflicts," European Journal of Operational Research, Elsevier, vol. 287(3), pages 1180-1190.
    7. Mohammad E. Nikoofal & Mehmet Gümüs, 2015. "On the value of terrorist’s private information in a government’s defensive resource allocation problem," IISE Transactions, Taylor & Francis Journals, vol. 47(6), pages 533-555, June.
    8. Peiqiu Guan & Jun Zhuang, 2016. "Modeling Resources Allocation in Attacker‐Defender Games with “Warm Up” CSF," Risk Analysis, John Wiley & Sons, vol. 36(4), pages 776-791, April.
    9. Xiaojun Shan & Jun Zhuang, 2013. "Cost of Equity in Homeland Security Resource Allocation in the Face of a Strategic Attacker," Risk Analysis, John Wiley & Sons, vol. 33(6), pages 1083-1099, June.
    10. Abdolmajid Yolmeh & Melike Baykal-Gürsoy, 2019. "Two-Stage Invest–Defend Game: Balancing Strategic and Operational Decisions," Decision Analysis, INFORMS, vol. 16(1), pages 46-66, March.
    11. Zhang, Jing & Wang, Yan & Zhuang, Jun, 2021. "Modeling multi-target defender-attacker games with quantal response attack strategies," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    12. Shan, Xiaojun & Zhuang, Jun, 2018. "Modeling cumulative defensive resource allocation against a strategic attacker in a multi-period multi-target sequential game," Reliability Engineering and System Safety, Elsevier, vol. 179(C), pages 12-26.
    13. Xing Gao & Weijun Zhong & Shue Mei, 2013. "Information Security Investment When Hackers Disseminate Knowledge," Decision Analysis, INFORMS, vol. 10(4), pages 352-368, December.
    14. Hausken, Kjell & Zhuang, Jun, 2013. "The impact of disaster on the strategic interaction between company and government," European Journal of Operational Research, Elsevier, vol. 225(2), pages 363-376.
    15. Lin, Chen & Xiao, Hui & Kou, Gang & Peng, Rui, 2020. "Defending a series system with individual protection, overarching protection, and disinformation," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    16. Ridwan Al Aziz & Meilin He & Jun Zhuang, 2020. "An Attacker–defender Resource Allocation Game with Substitution and Complementary Effects," Risk Analysis, John Wiley & Sons, vol. 40(7), pages 1481-1506, July.
    17. Ye, Zhi-Sheng & Peng, Rui & Wang, Wenbin, 2017. "Defense and attack of performance-sharing common bus systemsAuthor-Name: Zhai, Qingqing," European Journal of Operational Research, Elsevier, vol. 256(3), pages 962-975.
    18. Zhang, Xiaoxiong & Ding, Song & Ge, Bingfeng & Xia, Boyuan & Pedrycz, Witold, 2021. "Resource allocation among multiple targets for a defender-attacker game with false targets consideration," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    19. Yan, Xihong & Ren, Xiaorong & Nie, Xiaofeng, 2022. "A budget allocation model for domestic airport network protection," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    20. Kjell Hausken, 2019. "Special versus general protection and attack of two assets," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 29(4), pages 53-93.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:218:y:2022:i:pb:s0951832021006372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.