IDEAS home Printed from https://ideas.repec.org/a/wly/jfutmk/v38y2018i5p586-606.html
   My bibliography  Save this article

On full calibration of hybrid local volatility and regime‐switching models

Author

Listed:
  • Xin‐Jiang He
  • Song‐Ping Zhu

Abstract

Calibrating local regime‐switching models is a challenging problem, especially when the volatility functions are assumed to depend on both of the underlying price and time. In this paper, the inverse problem of determining local volatility functions is firstly established and then solved through the Tikhonov regularization to obtain the optimal solution, which is achieved iteratively through a newly designed numerical algorithm. While our numerical tests with artificial data show that our algorithm can provide quite accurate and stable results, its performance with the involvement of real market data have been further demonstrated using options written on the S&P 500 index.

Suggested Citation

  • Xin‐Jiang He & Song‐Ping Zhu, 2018. "On full calibration of hybrid local volatility and regime‐switching models," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(5), pages 586-606, May.
  • Handle: RePEc:wly:jfutmk:v:38:y:2018:i:5:p:586-606
    DOI: 10.1002/fut.21901
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/fut.21901
    Download Restriction: no

    File URL: https://libkey.io/10.1002/fut.21901?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Toby Daglish & John Hull & Wulin Suo, 2007. "Volatility surfaces: theory, rules of thumb, and empirical evidence," Quantitative Finance, Taylor & Francis Journals, vol. 7(5), pages 507-524.
    2. Naik, Vasanttilak, 1993. "Option Valuation and Hedging Strategies with Jumps in the Volatility of Asset Returns," Journal of Finance, American Finance Association, vol. 48(5), pages 1969-1984, December.
    3. Robert J. Elliott & Leunglung Chan & Tak Kuen Siu, 2015. "A Dupire Equation For A Regime-Switching Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(04), pages 1-13.
    4. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    5. Chernov, Mikhail & Ronald Gallant, A. & Ghysels, Eric & Tauchen, George, 2003. "Alternative models for stock price dynamics," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 225-257.
    6. Bjørn Eraker, 2004. "Do Stock Prices and Volatility Jump? Reconciling Evidence from Spot and Option Prices," Journal of Finance, American Finance Association, vol. 59(3), pages 1367-1404, June.
    7. He, Xin-Jiang & Zhu, Song-Ping, 2017. "How should a local regime-switching model be calibrated?," Journal of Economic Dynamics and Control, Elsevier, vol. 78(C), pages 149-163.
    8. Mark Rubinstein., 1994. "Implied Binomial Trees," Research Program in Finance Working Papers RPF-232, University of California at Berkeley.
    9. Scott, Louis O., 1987. "Option Pricing when the Variance Changes Randomly: Theory, Estimation, and an Application," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(4), pages 419-438, December.
    10. Rubinstein, Mark, 1985. "Nonparametric Tests of Alternative Option Pricing Models Using All Reported Trades and Quotes on the 30 Most Active CBOE Option Classes from August 23, 1976 through August 31, 1978," Journal of Finance, American Finance Association, vol. 40(2), pages 455-480, June.
    11. John Buffington & Robert J. Elliott, 2002. "American Options With Regime Switching," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 5(05), pages 497-514.
    12. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    13. Song-Ping Zhu, 2006. "An exact and explicit solution for the valuation of American put options," Quantitative Finance, Taylor & Francis Journals, vol. 6(3), pages 229-242.
    14. Stefano Herzel, 1998. "A Simple Model for Option Pricing with Jumping Stochastic Volatility," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 1(04), pages 487-505.
    15. Peiro, Amado, 1999. "Skewness in financial returns," Journal of Banking & Finance, Elsevier, vol. 23(6), pages 847-862, June.
    16. Bernard Dumas & Jeff Fleming & Robert E. Whaley, 1998. "Implied Volatility Functions: Empirical Tests," Journal of Finance, American Finance Association, vol. 53(6), pages 2059-2106, December.
    17. Rubinstein, Mark, 1994. "Implied Binomial Trees," Journal of Finance, American Finance Association, vol. 49(3), pages 771-818, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Sha & He, Xin-Jiang, 2020. "Pricing variance and volatility swaps with stochastic volatility, stochastic interest rate and regime switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    2. Xin-Jiang He & Song-Ping Zhu, 2019. "Variance And Volatility Swaps Under A Two-Factor Stochastic Volatility Model With Regime Switching," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(04), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Xin-Jiang & Zhu, Song-Ping, 2017. "How should a local regime-switching model be calibrated?," Journal of Economic Dynamics and Control, Elsevier, vol. 78(C), pages 149-163.
    2. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    3. Timothy Sharp & Steven Li & David Allen, 2010. "Empirical performance of affine option pricing models: evidence from the Australian index options market," Applied Financial Economics, Taylor & Francis Journals, vol. 20(6), pages 501-514.
    4. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    5. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    6. Jin Zhang & Yi Xiang, 2008. "The implied volatility smirk," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 263-284.
    7. David S. Bates, 1995. "Testing Option Pricing Models," NBER Working Papers 5129, National Bureau of Economic Research, Inc.
    8. Siddiqi, Hammad, 2014. "Analogy Making and the Structure of Implied Volatility Skew," MPRA Paper 60921, University Library of Munich, Germany.
    9. Xin‐Jiang He & Wenting Chen, 2021. "A semianalytical formula for European options under a hybrid Heston–Cox–Ingersoll–Ross model with regime switching," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 343-352, January.
    10. Xin‐Jiang He & Sha Lin, 2023. "Analytically pricing European options under a hybrid stochastic volatility and interest rate model with a general correlation structure," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(7), pages 951-967, July.
    11. Alexander, Carol & Nogueira, Leonardo M., 2007. "Model-free hedge ratios and scale-invariant models," Journal of Banking & Finance, Elsevier, vol. 31(6), pages 1839-1861, June.
    12. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    13. Christoffersen, Peter & Heston, Steven & Jacobs, Kris, 2010. "Option Anomalies and the Pricing Kernel," Working Papers 11-17, University of Pennsylvania, Wharton School, Weiss Center.
    14. Charles J. Corrado & Tie Su, 1996. "Skewness And Kurtosis In S&P 500 Index Returns Implied By Option Prices," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(2), pages 175-192, June.
    15. Carol Alexander & Leonardo Nogueira, 2007. "Model-free price hedge ratios for homogeneous claims on tradable assets," Quantitative Finance, Taylor & Francis Journals, vol. 7(5), pages 473-479.
    16. Du Du & Dan Luo, 2019. "The Pricing of Jump Propagation: Evidence from Spot and Options Markets," Management Science, INFORMS, vol. 67(5), pages 2360-2387, May.
    17. Hsuan-Chu Lin & Ren-Raw Chen & Oded Palmon, 2016. "Explaining the volatility smile: non-parametric versus parametric option models," Review of Quantitative Finance and Accounting, Springer, vol. 46(4), pages 907-935, May.
    18. Guidolin, Massimo & Timmermann, Allan, 2003. "Option prices under Bayesian learning: implied volatility dynamics and predictive densities," Journal of Economic Dynamics and Control, Elsevier, vol. 27(5), pages 717-769, March.
    19. Gonçalo Faria & João Correia-da-Silva, 2014. "A closed-form solution for options with ambiguity about stochastic volatility," Review of Derivatives Research, Springer, vol. 17(2), pages 125-159, July.
    20. Siddiqi, Hammad, 2015. "Anchoring Heuristic in Option Pricing," Risk and Sustainable Management Group Working Papers 207677, University of Queensland, School of Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jfutmk:v:38:y:2018:i:5:p:586-606. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0270-7314/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.