IDEAS home Printed from https://ideas.repec.org/a/wly/isacfm/v28y2021i1p72-83.html
   My bibliography  Save this article

Forecasting spot prices of agricultural commodities in India: Application of deep‐learning models

Author

Listed:
  • Manogna R L
  • Aswini Kumar Mishra

Abstract

Food price fluctuations can impact both producers and consumers. Forecasting the prices of the agricultural commodities is of prime concern not only to the government but also to farmers and agribusiness firms. In developing countries like India, management of food security needs competent and efficient forecasting of food prices. With the availability of data, recent innovation in deep‐learning models provides a feasible solution to accurately forecast the prices. In this study, we examine the superiority of these models using the daily spot prices of five major commodities traded on the National Commodity and Derivatives Exchange: cotton seed, castor seed, rape mustard seed, soybean seed, and guar seed. The results were obtained from the application of the traditional univariate autoregressive integrated moving average model and deep‐learning techniques like the time‐delay neural network (TDNN) and long short‐term memory (LSTM) network. The empirical results indicate that the LSTM model is indeed suitable for the financial domain and captures the directional movement of the spot price changes with high accuracy compared with the TDNN and other linear models. Accuracy of the performance of these models has been compared using out‐of‐sample performance measure. The overall objective of this paper is to demonstrate the utility of spot price forecasting for farmers and traders in offering them the best predictions of the price movements. Our results provide a possibility of developing pricing models that can help in fairly regulating agricultural commodity prices.

Suggested Citation

  • Manogna R L & Aswini Kumar Mishra, 2021. "Forecasting spot prices of agricultural commodities in India: Application of deep‐learning models," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 28(1), pages 72-83, January.
  • Handle: RePEc:wly:isacfm:v:28:y:2021:i:1:p:72-83
    DOI: 10.1002/isaf.1487
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/isaf.1487
    Download Restriction: no

    File URL: https://libkey.io/10.1002/isaf.1487?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Krauss, Christopher & Do, Xuan Anh & Huck, Nicolas, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," European Journal of Operational Research, Elsevier, vol. 259(2), pages 689-702.
    2. Christopher Krauss & Anh Do & Nicolas Huck, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," Post-Print hal-01768895, HAL.
    3. Norman R. Swanson & Halbert White, 1997. "A Model Selection Approach To Real-Time Macroeconomic Forecasting Using Linear Models And Artificial Neural Networks," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 540-550, November.
    4. Allen, P. Geoffrey, 1994. "Economic forecasting in agriculture," International Journal of Forecasting, Elsevier, vol. 10(1), pages 81-135, June.
    5. Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
    6. Zhiqiang Guo & Huaiqing Wang & Quan Liu & Jie Yang, 2014. "A Feature Fusion Based Forecasting Model for Financial Time Series," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-13, June.
    7. Heravi, Saeed & Osborn, Denise R. & Birchenhall, C. R., 2004. "Linear versus neural network forecasts for European industrial production series," International Journal of Forecasting, Elsevier, vol. 20(3), pages 435-446.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kamaladdin Fataliyev & Aneesh Chivukula & Mukesh Prasad & Wei Liu, 2021. "Stock Market Analysis with Text Data: A Review," Papers 2106.12985, arXiv.org, revised Jul 2021.
    2. Kentaro Imajo & Kentaro Minami & Katsuya Ito & Kei Nakagawa, 2020. "Deep Portfolio Optimization via Distributional Prediction of Residual Factors," Papers 2012.07245, arXiv.org.
    3. Zhou, Hao & Kalev, Petko S., 2019. "Algorithmic and high frequency trading in Asia-Pacific, now and the future," Pacific-Basin Finance Journal, Elsevier, vol. 53(C), pages 186-207.
    4. Alexander Jakob Dautel & Wolfgang Karl Härdle & Stefan Lessmann & Hsin-Vonn Seow, 2020. "Forex exchange rate forecasting using deep recurrent neural networks," Digital Finance, Springer, vol. 2(1), pages 69-96, September.
    5. Flori, Andrea & Regoli, Daniele, 2021. "Revealing Pairs-trading opportunities with long short-term memory networks," European Journal of Operational Research, Elsevier, vol. 295(2), pages 772-791.
    6. Kriebel, Johannes & Stitz, Lennart, 2022. "Credit default prediction from user-generated text in peer-to-peer lending using deep learning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 309-323.
    7. Jian Ni & Yue Xu, 2023. "Forecasting the Dynamic Correlation of Stock Indices Based on Deep Learning Method," Computational Economics, Springer;Society for Computational Economics, vol. 61(1), pages 35-55, January.
    8. Tony Guida & Guillaume Coqueret, 2019. "Ensemble Learning Applied to Quant Equity: Gradient Boosting in a Multifactor Framework," Post-Print hal-02311104, HAL.
    9. Rubesam, Alexandre, 2022. "Machine learning portfolios with equal risk contributions: Evidence from the Brazilian market," Emerging Markets Review, Elsevier, vol. 51(PB).
    10. Pushpendu Ghosh & Ariel Neufeld & Jajati Keshari Sahoo, 2020. "Forecasting directional movements of stock prices for intraday trading using LSTM and random forests," Papers 2004.10178, arXiv.org, revised Jun 2021.
    11. Elizabeth Fons & Paula Dawson & Xiao-jun Zeng & John Keane & Alexandros Iosifidis, 2020. "Evaluating data augmentation for financial time series classification," Papers 2010.15111, arXiv.org.
    12. Fabian Waldow & Matthias Schnaubelt & Christopher Krauss & Thomas Günter Fischer, 2021. "Machine Learning in Futures Markets," JRFM, MDPI, vol. 14(3), pages 1-14, March.
    13. Kim, A. & Yang, Y. & Lessmann, S. & Ma, T. & Sung, M.-C. & Johnson, J.E.V., 2020. "Can deep learning predict risky retail investors? A case study in financial risk behavior forecasting," European Journal of Operational Research, Elsevier, vol. 283(1), pages 217-234.
    14. Klein, Tony, 2022. "Agree to disagree? Predictions of U.S. nonfarm payroll changes between 2008 and 2020 and the impact of the COVID19 labor shock," Journal of Economic Behavior & Organization, Elsevier, vol. 194(C), pages 264-286.
    15. Omer Berat Sezer & Mehmet Ugur Gudelek & Ahmet Murat Ozbayoglu, 2019. "Financial Time Series Forecasting with Deep Learning : A Systematic Literature Review: 2005-2019," Papers 1911.13288, arXiv.org.
    16. Illia Baranochnikov & Robert Ślepaczuk, 2022. "A comparison of LSTM and GRU architectures with novel walk-forward approach to algorithmic investment strategy," Working Papers 2022-21, Faculty of Economic Sciences, University of Warsaw.
    17. Cao, Yi & Liu, Xiaoquan & Zhai, Jia, 2021. "Option valuation under no-arbitrage constraints with neural networks," European Journal of Operational Research, Elsevier, vol. 293(1), pages 361-374.
    18. Thierry Warin & Aleksandar Stojkov, 2021. "Machine Learning in Finance: A Metadata-Based Systematic Review of the Literature," JRFM, MDPI, vol. 14(7), pages 1-31, July.
    19. Keer Yang & Guanqun Zhang & Chuan Bi & Qiang Guan & Hailu Xu & Shuai Xu, 2023. "Improving CNN-base Stock Trading By Considering Data Heterogeneity and Burst," Papers 2303.09407, arXiv.org.
    20. Iwao Maeda & David deGraw & Michiharu Kitano & Hiroyasu Matsushima & Kiyoshi Izumi & Hiroki Sakaji & Atsuo Kato, 2020. "Latent Segmentation of Stock Trading Strategies Using Multi-Modal Imitation Learning," JRFM, MDPI, vol. 13(11), pages 1-12, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:isacfm:v:28:y:2021:i:1:p:72-83. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1099-1174/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.