IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v34y2023i7ne2816.html
   My bibliography  Save this article

Generalized gamma ARMA process for synthetic aperture radar amplitude and intensity data

Author

Listed:
  • Willams B. F. da Silva
  • Pedro M. Almeida‐Junior
  • Abraão D. C. Nascimento

Abstract

We propose a new autoregressive moving average (ARMA) process with generalized gamma (GΓ$$ \Gamma $$) marginal law, called GΓ$$ \Gamma $$‐ARMA. We derive some of its mathematical properties: moment‐based closed‐form expressions, score function, and Fisher information matrix. We provide a procedure for obtaining maximum likelihood estimates for the GΓ$$ \Gamma $$‐ARMA parameters. Its performance is quantified and discussed using Monte Carlo experiments, considering (among others) various link functions. Finally, our proposal is applied to solve remote sensing problems using synthetic aperture radar (SAR) imagery. In particular, the GΓ$$ \Gamma $$‐ARMA process is applied to real data from images taken in the Munich and San Francisco regions. The results show that GΓ$$ \Gamma $$‐ARMA describes the neighborhoods of SAR features better than the gamma‐ARMA process (a reference for asymmetric positive data). For pixel ray modeling, our proposal outperforms 𝒢I0 and gamma‐ARMA.

Suggested Citation

  • Willams B. F. da Silva & Pedro M. Almeida‐Junior & Abraão D. C. Nascimento, 2023. "Generalized gamma ARMA process for synthetic aperture radar amplitude and intensity data," Environmetrics, John Wiley & Sons, Ltd., vol. 34(7), November.
  • Handle: RePEc:wly:envmet:v:34:y:2023:i:7:n:e2816
    DOI: 10.1002/env.2816
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2816
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2816?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chao Chen & Jamie Twycross & Jonathan M Garibaldi, 2017. "A new accuracy measure based on bounded relative error for time series forecasting," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-23, March.
    2. Andréa Rocha & Francisco Cribari-Neto, 2009. "Beta autoregressive moving average models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(3), pages 529-545, November.
    3. Mo Li & QiQi Lu, 2022. "Changepoint detection in autocorrelated ordinal categorical time series," Environmetrics, John Wiley & Sons, Ltd., vol. 33(7), November.
    4. Gomes, O. & Combes, C. & Dussauchoy, A., 2008. "Parameter estimation of the generalized gamma distribution," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(4), pages 955-963.
    5. Kevin F. Forbes, 2023. "CO2 has significant implications for hourly ambient temperature: Evidence from Hawaii," Environmetrics, John Wiley & Sons, Ltd., vol. 34(6), September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abraão D. C. Nascimento & Maria C. S. Lima & Hassan Bakouch & Najla Qarmalah, 2023. "Scaled Muth–ARMA Process Applied to Finance Market," Mathematics, MDPI, vol. 11(8), pages 1-18, April.
    2. Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
    3. Paolo Gorgi & Siem Jan Koopman, 2020. "Beta observation-driven models with exogenous regressors: a joint analysis of realized correlation and leverage effects," Tinbergen Institute Discussion Papers 20-004/III, Tinbergen Institute.
    4. Jarimi, Hasila & Al-Waeli, Ali H.A. & Razak, Tajul Rosli & Abu Bakar, Mohd Nazari & Fazlizan, Ahmad & Ibrahim, Adnan & Sopian, Kamaruzzaman, 2022. "Neural network modelling and performance estimation of dual-fluid photovoltaic thermal solar collectors in tropical climate conditions," Renewable Energy, Elsevier, vol. 197(C), pages 1009-1019.
    5. Mirko Armillotta & Paolo Gorgi, 2023. "Pseudo-variance quasi-maximum likelihood estimation of semi-parametric time series models," Tinbergen Institute Discussion Papers 23-054/III, Tinbergen Institute.
    6. Cristine Rauber & Francisco Cribari-Neto & Fábio M. Bayer, 2020. "Improved testing inferences for beta regressions with parametric mean link function," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 687-717, December.
    7. Zheng, Tingguo & Xiao, Han & Chen, Rong, 2015. "Generalized ARMA models with martingale difference errors," Journal of Econometrics, Elsevier, vol. 189(2), pages 492-506.
    8. Truquet, Lionel, 2023. "Strong mixing properties of discrete-valued time series with exogenous covariates," Stochastic Processes and their Applications, Elsevier, vol. 160(C), pages 294-317.
    9. Francisco JA Cysneiros, 2018. "Symmetric Regression Model for Temporal Data," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 5(2), pages 44-45, February.
    10. Andréa Rocha & Alexandre Simas, 2011. "Influence diagnostics in a general class of beta regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(1), pages 95-119, May.
    11. Urko Aguirre-Larracoechea & Cruz E. Borges, 2021. "Imputation for Repeated Bounded Outcome Data: Statistical and Machine-Learning Approaches," Mathematics, MDPI, vol. 9(17), pages 1-27, August.
    12. Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2020. "The M4 Competition: 100,000 time series and 61 forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(1), pages 54-74.
    13. Božidar Popović & Saralees Nadarajah & Miroslav Ristić, 2013. "A new non-linear AR(1) time series model having approximate beta marginals," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(1), pages 71-92, January.
    14. Dahl, Christian M. & Effraimidis, Georgios & Pedersen, Mikkel H., 2019. "Nonparametric wind power forecasting under fixed and random censoring," Energy Economics, Elsevier, vol. 84(C).
    15. Brummelhuis, Raymond & Luo, Zhongmin, 2019. "Bank Net Interest Margin Forecasting and Capital Adequacy Stress Testing by Machine Learning Techniques," MPRA Paper 94779, University Library of Munich, Germany.
    16. Zheng, Tingguo & Chen, Rong, 2017. "Dirichlet ARMA models for compositional time series," Journal of Multivariate Analysis, Elsevier, vol. 158(C), pages 31-46.
    17. Chaitanya B. Pande & Nadhir Al-Ansari & N. L. Kushwaha & Aman Srivastava & Rabeea Noor & Manish Kumar & Kanak N. Moharir & Ahmed Elbeltagi, 2022. "Forecasting of SPI and Meteorological Drought Based on the Artificial Neural Network and M5P Model Tree," Land, MDPI, vol. 11(11), pages 1-24, November.
    18. Aydın, Emre & Turan, Onder, 2023. "Performance models of passenger aircraft and propulsion systems based on particle swarm and Spotted Hyena Optimization methods," Energy, Elsevier, vol. 268(C).
    19. Dalton Garcia Borges de Souza & Erivelton Antonio dos Santos & Francisco Tarcísio Alves Júnior & Mariá Cristina Vasconcelos Nascimento, 2021. "On Comparing Cross-Validated Forecasting Models with a Novel Fuzzy-TOPSIS Metric: A COVID-19 Case Study," Sustainability, MDPI, vol. 13(24), pages 1-25, December.
    20. Yilmaz, Hulya & Sazak, Hakan S., 2014. "Double-looped maximum likelihood estimation for the parameters of the generalized gamma distribution," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 98(C), pages 18-30.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:34:y:2023:i:7:n:e2816. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.