IDEAS home Printed from https://ideas.repec.org/a/uem/journl/v2y2011ixviiip65-76.html
   My bibliography  Save this article

A Queuing Model Study of Port Performance Evolution

Author

Listed:
  • Branislav Dragovic

    (University of Montenegro)

  • Nenad Dj. Zrnic

    (University of Belgrade)

Abstract

The main purposes of the paper are to describe port performance evaluation by queuing models (QMs) based on the nature and applications of the models, state of the art survey based on the classification and identify considered problems and the applications of the existing QMs. There are number of benefits to be gained from QMs for port performance evaluation, among them are: faster development, greater flexibility, less data required and it is easier to understand and interpret the results.

Suggested Citation

  • Branislav Dragovic & Nenad Dj. Zrnic, 2011. "A Queuing Model Study of Port Performance Evolution," Analele Universitatii "Eftimie Murgu" Resita Fascicola de Inginerie, "Eftimie Murgu" University of Resita, vol. 2(XVIII), pages 65-76, December.
  • Handle: RePEc:uem:journl:v:2:y:2011:i:xviii:p:65-76
    as

    Download full text from publisher

    File URL: http://www.anale-ing.uem.ro/2011/B6.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carlos F. Daganzo, 1990. "The Productivity of Multipurpose Seaport Terminals," Transportation Science, INFORMS, vol. 24(3), pages 205-216, August.
    2. Federico Sabria & Carlos F. Daganzo, 1989. "Approximate Expressions for Queueing Systems with Scheduled Arrivals and Established Service Order," Transportation Science, INFORMS, vol. 23(3), pages 159-165, August.
    3. A. Novaes & E. Frankel, 1966. "A Queuing Model for Unitized Cargo Generation," Operations Research, INFORMS, vol. 14(1), pages 100-132, February.
    4. Susila Munisamy, 2010. "Timber terminal capacity planning through queuing theory," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 12(2), pages 147-161, June.
    5. Changqian Guan & Rongfang (Rachel) Liu, 2009. "Container terminal gate appointment system optimization," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 11(4), pages 378-398, December.
    6. Evangelos Mennis & Agapios Platis & Ioannis Lagoudis & Nikitas Nikitakos, 2008. "Improving Port Container Terminal Efficiency with the use of Markov Theory," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 10(3), pages 243-257, September.
    7. Chin-Yuan Chu & Wen-Chih Huang, 2002. "Aggregates cranes handling capacity of container terminals: the port of Kaohsiung," Maritime Policy & Management, Taylor & Francis Journals, vol. 29(4), pages 341-350.
    8. Branislav Dragović & Nam Kyu Park & Zoran Radmilović, 2006. "Ship-berth link performance evaluation: simulation and analytical approaches," Maritime Policy & Management, Taylor & Francis Journals, vol. 33(3), pages 281-299, July.
    9. Kang, Seungmo & Medina, Juan C. & Ouyang, Yanfeng, 2008. "Optimal operations of transportation fleet for unloading activities at container ports," Transportation Research Part B: Methodological, Elsevier, vol. 42(10), pages 970-984, December.
    10. Ioannis N. Lagoudis & Agapios N. Platis, 2009. "Using birth-and-death theory for container terminal strategic investment decisions," International Journal of Decision Sciences, Risk and Management, Inderscience Enterprises Ltd, vol. 1(1/2), pages 81-103.
    11. J Fernando Alvarez & Tore Longva & Erna S Engebrethsen, 2010. "A methodology to assess vessel berthing and speed optimization policies," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 12(4), pages 327-346, December.
    12. Taniguchi, Eiichi & Noritake, Michihiko & Yamada, Tadashi & Izumitani, Toru, 1999. "Optimal size and location planning of public logistics terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 35(3), pages 207-222, September.
    13. Easa, Said M., 1987. "Approximate queueing models for analyzing harbor terminal operations," Transportation Research Part B: Methodological, Elsevier, vol. 21(4), pages 269-286, August.
    14. Ernest Koenigsberg & Richard C. Lam, 1976. "Cyclic Queue Models of Fleet Operations," Operations Research, INFORMS, vol. 24(3), pages 516-529, June.
    15. S. Sacone & S. Siri, 2009. "An integrated simulation-optimization framework for the operational planning of seaport container terminals," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 15(3), pages 275-293, January.
    16. Anne Goodchild & Karthik Mohan, 2008. "The Clean Trucks Program: Evaluation of Policy Impacts on Marine Terminal Operations," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 10(4), pages 393-408, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Debjit Roy & René De Koster & René Bekker, 2020. "Modeling and Design of Container Terminal Operations," Operations Research, INFORMS, vol. 68(3), pages 686-715, May.
    2. Roy, D. & de Koster, M.B.M., 2014. "Modeling and Design of Container Terminal Operations," ERIM Report Series Research in Management ERS-2014-008-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    3. Branislav Dragović & Nam Kyu Park & Zoran Radmilović, 2006. "Ship-berth link performance evaluation: simulation and analytical approaches," Maritime Policy & Management, Taylor & Francis Journals, vol. 33(3), pages 281-299, July.
    4. Vibhuti Dhingra & Debjit Roy & René B. M. Koster, 2017. "A cooperative quay crane-based stochastic model to estimate vessel handling time," Flexible Services and Manufacturing Journal, Springer, vol. 29(1), pages 97-124, March.
    5. Branislav Dragović & Ernestos Tzannatos & Nam Kuy Park, 2017. "Simulation modelling in ports and container terminals: literature overview and analysis by research field, application area and tool," Flexible Services and Manufacturing Journal, Springer, vol. 29(1), pages 4-34, March.
    6. Jia, Shuai & Li, Chung-Lun & Xu, Zhou, 2020. "A simulation optimization method for deep-sea vessel berth planning and feeder arrival scheduling at a container port," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 174-196.
    7. Wang, Shuaian & Meng, Qiang, 2012. "Liner ship route schedule design with sea contingency time and port time uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 615-633.
    8. Milorad Vidovic & Kap Kim, 2006. "Estimating the cycle time of three-stage material handling systems," Annals of Operations Research, Springer, vol. 144(1), pages 181-200, April.
    9. Ngoc Anh Dung Do & Izabela Ewa Nielsen & Gang Chen & Peter Nielsen, 2016. "A simulation-based genetic algorithm approach for reducing emissions from import container pick-up operation at container terminal," Annals of Operations Research, Springer, vol. 242(2), pages 285-301, July.
    10. Gharehgozli, A.H. & Roy, D. & de Koster, M.B.M., 2014. "Sea Container Terminals," ERIM Report Series Research in Management ERS-2014-009-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    11. Orlando Marco Belcore & Massimo Di Gangi & Antonio Polimeni, 2023. "Connected Vehicles and Digital Infrastructures: A Framework for Assessing the Port Efficiency," Sustainability, MDPI, vol. 15(10), pages 1-16, May.
    12. Frank Meisel & Christian Bierwirth, 2013. "A Framework for Integrated Berth Allocation and Crane Operations Planning in Seaport Container Terminals," Transportation Science, INFORMS, vol. 47(2), pages 131-147, May.
    13. Carlo Lancia & Gianluca Guadagni & Sokol Ndreca & Benedetto Scoppola, 2018. "Asymptotics for the late arrivals problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 88(3), pages 475-493, December.
    14. Chen, Gang & Govindan, Kannan & Golias, Mihalis M., 2013. "Reducing truck emissions at container terminals in a low carbon economy: Proposal of a queueing-based bi-objective model for optimizing truck arrival pattern," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 55(C), pages 3-22.
    15. Chen, Gang & Govindan, Kannan & Yang, Zhongzhen, 2013. "Managing truck arrivals with time windows to alleviate gate congestion at container terminals," International Journal of Production Economics, Elsevier, vol. 141(1), pages 179-188.
    16. Dhingra, Vibhuti & Kumawat, Govind Lal & Roy, Debjit & Koster, René de, 2018. "Solving semi-open queuing networks with time-varying arrivals: An application in container terminal landside operations," European Journal of Operational Research, Elsevier, vol. 267(3), pages 855-876.
    17. Roy, Debjit & van Ommeren, Jan-Kees & de Koster, René & Gharehgozli, Amir, 2022. "Modeling landside container terminal queues: Exact analysis and approximations," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 73-102.
    18. Ebru K. Bish & Thin‐Yin Leong & Chung‐Lun Li & Jonathan W. C. Ng & David Simchi‐Levi, 2001. "Analysis of a new vehicle scheduling and location problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(5), pages 363-385, August.
    19. Neagoe, Mihai & Taskhiri, Mohammad Sadegh & Nguyen, Hong-Oanh & Hvolby, Hans-Henrik & Turner, Paul A., 2018. "Exploring congestion impact beyond the bulk cargo terminal gate," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Logistics 4.0 and Sustainable Supply Chain Management: Innovative Solutions for Logistics and Sustainable Supply Chain Management in the Context of In, volume 26, pages 61-80, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    20. Zhang, Xiaoju & Zeng, Qingcheng & Sheu, Jiuh-Biing, 2019. "Modeling the productivity and stability of a terminal operation system with quay crane double cycling," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 181-197.

    More about this item

    Keywords

    queuing models (QMs); port performance evaluation;

    JEL classification:

    • M - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uem:journl:v:2:y:2011:i:xviii:p:65-76. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Gilbert-Rainer Gillich (email available below). General contact details of provider: https://edirc.repec.org/data/feuemro.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.