IDEAS home Printed from https://ideas.repec.org/a/taf/marpmg/v44y2017i8p1034-1055.html
   My bibliography  Save this article

An equilibrium-based network model for international container flows

Author

Listed:
  • Dung-Ying Lin
  • Kuan-Ling Huang

Abstract

The liner shipping industry is a highly complex system and is extremely sensitive to rapid changes in the environment. To facilitate decision-making in response to endogenous and exogenous shocks, this research develops a strategic network model based on equilibrium principles to analyze the international marine liner shipping network according to port charge, congestion level at the port, and load factor of the ship and estimates the possible container flows under different scenarios in the long run. The distribution model of container flows is extended from Beckmann's transformation. To calibrate the parameters employed in the model so that it offers greater fidelity in predicting container flows, we devise a descent direction-based heuristic. The proposed framework is empirically applied to various scenarios to validate the model and predict the flow pattern after significant events. By identifying these events’ potential impact on the maritime network, the presented model can help relevant stakeholders reduce uncertainty when shaping maritime policies so that they can seize opportunities to increase their competitiveness and maintain their advantage in the maritime market.

Suggested Citation

  • Dung-Ying Lin & Kuan-Ling Huang, 2017. "An equilibrium-based network model for international container flows," Maritime Policy & Management, Taylor & Francis Journals, vol. 44(8), pages 1034-1055, November.
  • Handle: RePEc:taf:marpmg:v:44:y:2017:i:8:p:1034-1055
    DOI: 10.1080/03088839.2017.1371855
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03088839.2017.1371855
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03088839.2017.1371855?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bell, Michael G.H. & Liu, Xin & Rioult, Jeremy & Angeloudis, Panagiotis, 2013. "A cost-based maritime container assignment model," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 58-70.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhuo Sun & Ran Zhang & Tao Zhu, 2022. "Simulating the Impact of the Sustained Melting Arctic on the Global Container Sea–Rail Intermodal Shipping," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    2. Achilleas Tsantis & John Mangan & Agustina Calatayud & Roberto Palacin, 2023. "Container shipping: a systematic literature review of themes and factors that influence the establishment of direct connections between countries," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 25(4), pages 667-697, December.
    3. Nagurney, Anna & Shukla, Shivani & Nagurney, Ladimer S. & Saberi, Sara, 2018. "A game theory model for freight service provision security investments for high-value cargo," Economics of Transportation, Elsevier, vol. 16(C), pages 21-28.
    4. Nicanor García Álvarez & Belarmino Adenso-Díaz & Laura Calzada-Infante, 2021. "Maritime Traffic as a Complex Network: a Systematic Review," Networks and Spatial Economics, Springer, vol. 21(2), pages 387-417, June.
    5. Li, Xinyan & Xie, Chi & Bao, Zhaoyao, 2022. "A multimodal multicommodity network equilibrium model with service capacity and bottleneck congestion for China-Europe containerized freight flows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asghari, Mohammad & Jaber, Mohamad Y. & Mirzapour Al-e-hashem, S.M.J., 2023. "Coordinating vessel recovery actions: Analysis of disruption management in a liner shipping service," European Journal of Operational Research, Elsevier, vol. 307(2), pages 627-644.
    2. Meng, Qiang & Lee, Chung-Yee, 2016. "Liner container assignment model with transit-time-sensitive container shipment demand and its applicationsAuthor-Name: Wang, Shuaian," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 135-155.
    3. Thalis P. V. Zis & Harilaos N. Psaraftis, 2022. "Impacts of short-term measures to decarbonize maritime transport on perishable cargoes," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 24(3), pages 602-629, September.
    4. Wang, Shuaian & Qu, Xiaobo & Yang, Ying, 2015. "Estimation of the perceived value of transit time for containerized cargoes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 298-308.
    5. Wang, Shuaian, 2015. "Optimal sequence of container ships in a string," European Journal of Operational Research, Elsevier, vol. 246(3), pages 850-857.
    6. Wang, Hua & Wang, Shuaian & Meng, Qiang, 2014. "Simultaneous optimization of schedule coordination and cargo allocation for liner container shipping networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 261-273.
    7. Jeong, Yoonjea & Kim, Gwang, 2023. "Reliable design of container shipping network with foldable container facility disruption," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
    8. Goh, Shao Hung & Chan, Yuxian, 2016. "Operational shadow pricing in back haul container shipping," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 92(C), pages 3-15.
    9. Angeloudis, Panagiotis & Greco, Luciano & Bell, Michael G.H., 2016. "Strategic maritime container service design in oligopolistic markets," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 22-37.
    10. Mengdi Zhang & George Q. Huang & Su Xiu Xu & Zhiheng Zhao, 2019. "Optimization based transportation service trading in B2B e-commerce logistics," Journal of Intelligent Manufacturing, Springer, vol. 30(7), pages 2603-2619, October.
    11. Ng, ManWo, 2014. "Distribution-free vessel deployment for liner shipping," European Journal of Operational Research, Elsevier, vol. 238(3), pages 858-862.
    12. Asadabadi, Ali & Miller-Hooks, Elise, 2018. "Co-opetition in enhancing global port network resiliency: A multi-leader, common-follower game theoretic approach," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 281-298.
    13. Sun, Zhuo & Zheng, Jianfeng, 2016. "Finding potential hub locations for liner shipping," Transportation Research Part B: Methodological, Elsevier, vol. 93(PB), pages 750-761.
    14. Liu, Ming & Chu, Feng & Zhang, Zizhen & Chu, Chengbin, 2015. "A polynomial-time heuristic for the quay crane double-cycling problem with internal-reshuffling operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 81(C), pages 52-74.
    15. Wang, Shuaian & Wang, Hua & Meng, Qiang, 2015. "Itinerary provision and pricing in container liner shipping revenue management," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 77(C), pages 135-146.
    16. Cassiano A. Isler & Yesid Asaff & Marin Marinov, 2020. "Designing a Geo-Strategic Railway Freight Network in Brazil Using GIS," Sustainability, MDPI, vol. 13(1), pages 1-21, December.
    17. Pablo E. Achurra-Gonzalez & Panagiotis Angeloudis & Nils Goldbeck & Daniel J. Graham & Konstantinos Zavitsas & Marc E. J. Stettler, 2019. "Evaluation of port disruption impacts in the global liner shipping network," Journal of Shipping and Trade, Springer, vol. 4(1), pages 1-21, December.
    18. Zhen, Lu & Wu, Yiwei & Wang, Shuaian & Laporte, Gilbert, 2020. "Green technology adoption for fleet deployment in a shipping network," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 388-410.
    19. Francesco Corman & Francesco Viti & Rudy R. Negenborn, 2017. "Equilibrium models in multimodal container transport systems," Flexible Services and Manufacturing Journal, Springer, vol. 29(1), pages 125-153, March.
    20. Wang, Shuaian & Liu, Zhiyuan & Meng, Qiang, 2015. "Segment-based alteration for container liner shipping network design," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 128-145.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:marpmg:v:44:y:2017:i:8:p:1034-1055. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TMPM20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.